Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Answer:
Perimeter = 72 meters
Step-by-step explanation:
Let L be the length and W the width of the rectangle
We have the following relationship
L = 2W + 6
Area of the rectangle = LW = (2W+6)W by substituting for L
Area =
2W² + 6W =260 ==> 2W² + 6W -260 = 0
Dividing both sides by 2 yields
W² + 3W -130 = 0
This is a quadratic equation which can be solved using the formula for the roots of the equation ie the values of W which satisfy the above equation
However in this case it is easier to solve by factorization
W² + 3W -130
= W² + 13W - 10W - 130
= W(W + 13) -10(W + 13)
= (W+13)(W-10) = 0
This means W is either -13 or W = 10
Since W cannot be negative, we get W = 10 and
L = 2(10) + 6 = 26
Perimeter of a rectangle is given by
2(L + W) = 2(26 + 10) = 2(36) = 72 Answer
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.