Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Using the normal distribution, there is a 0.007 = 0.7% probability that the mean score for 10 randomly selected people who took the LSAT would be above 157.
Normal Probability Distribution
The z-score of a measure X of a normally distributed variable with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex] is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
- The z-score measures how many standard deviations the measure is above or below the mean.
- Looking at the z-score table, the p-value associated with this z-score is found, which is the percentile of X.
- By the Central Limit Theorem, the sampling distribution of sample means of size n has standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
Researching this problem on the internet, the parameters are given as follows:
[tex]\mu = 150, \sigma = 9, n = 10, s = \frac{9}{\sqrt{10}} = 2.85[/tex]
The probability is one subtracted by the p-value of Z when X = 157, hence:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
Z = (157 - 150)/2.85
Z = 2.46
Z = 2.46 has a p-value of 0.993.
1 - 0.993 = 0.007.
0.007 = 0.7% probability that the mean score for 10 randomly selected people who took the LSAT would be above 157.
More can be learned about the normal distribution at https://brainly.com/question/15181104
#SPJ1
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.