Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
a) The polynomial f(x) in expanded form is f(x) = x³ + 10 · x² - 20 · x - 24.
b) The rational function g(x) in factored form is g(x) = [(x - 6) · (x + 3)] / (x - 2). there is no slant asymptotes.
c) There is one evitable discontinuity at x = - 1, and one definitive discontinuity at x = 2, where there is a vertical asymptote.
How to analyze polynomial and rational functions
a) In the first part of this question we need to determine the equation of a polynomial in expanded form, derived from its factor form defined below:
f(x) = Π (x - rₐ), for a ∈ {1, 2, 3, 4, ..., n} (1)
Where rₐ is the a-th root of the polynomial.
If we know that r₁ = 6, r₂ = - 1 and r₃ = - 3, then the polynomial in factor form is:
f(x) = (x - 6) · (x + 1) · (x + 3)
f(x) = (x - 6) · (x² + 4 · x + 4)
f(x) = (x - 6) · x² + (x - 6) · (4 · x) + (x - 6) · 4
f(x) = x³ - 6 · x² + 4 · x² - 24 · x + 4 · x - 24
f(x) = x³ + 10 · x² - 20 · x - 24
The polynomial f(x) in expanded form is f(x) = x³ + 10 · x² - 20 · x - 24.
b) The rational function is introduced below:
g(x) = (x³ + 10 · x² - 20 · x - 24) / (x² - x - 2)
g(x) = [(x - 6) · (x + 1) · (x + 3)] / [(x - 2) · (x + 1)]
g(x) = [(x - 6) · (x + 3)] / (x - 2)
The slope of the slant asymptote is:
m = lim [g(x) / x] for x → ± ∞
m = [(x - 6) · (x + 3)] / [x · (x - 2)]
m = 1
And the intercept of the slant asymptote is:
n = lim [g(x) - m · x] for x → ± ∞
n = Non-existent
Hence, there is no slant asymptotes.
c) There is vertical asymptote at a x-point if the denominator is equal to zero. There is one evitable discontinuity at x = - 1, and one definitive discontinuity at x = 2, where there is a vertical asymptote.
To learn more on asymptotes: https://brainly.com/question/4084552
#SPJ1
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.