At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Part A - The average value of v(t) over the interval (0, π/2) is 6/π
Part B - The displacement of the yo-yo from time t = 0 to time t = π is 0 m
Part C - The total distance the yo-yo travels from time t = 0 to time t = π is 6 m.
Part A: Find the average value of v(t) on the interval (0, π/2)
The average value of a function f(t) over the interval (a,b) is
[tex]f(t)_{avg} = \frac{1}{b - a} \int\limits^b_a {f(t)} \, dx[/tex]
So, since velocity at time t is given by v(t) = 3cos(t) for time t ≥ 0. Its average value over the interval (0, π/2) is given by
[tex]v(t)_{avg} = \frac{1}{\frac{\pi }{2} - 0} \int\limits^{\frac{\pi }{2} }_0 {v(t)} \, dt[/tex]
Since v(t) = 3cost, we have
[tex]v(t)_{avg} = \frac{1}{\frac{\pi }{2} - 0} \int\limits^{\frac{\pi }{2} }_0 {3cos(t)} \, dt\\= \frac{3}{\frac{\pi }{2}} \int\limits^{\frac{\pi }{2} }_0 {cos(t)} \, dt\\= \frac{6}{{\pi}} [{sin(t)}]^{\frac{\pi }{2} }_{0} \\= \frac{6}{{\pi}} [{sin(\frac{\pi }{2})} - sin0]\\ = \frac{6}{{\pi}} [1 - 0]\\ = \frac{6}{{\pi}} [1]\\ = \frac{6}{{\pi}}[/tex]
So, the average value of v(t) over the interval (0, π/2) is 6/π
Part B: What is the displacement of the yo-yo from time t = 0 to time t = π?
To find the displacement of the yo-yo, we need to find its position.
So, its position x = ∫v(t)dt
= ∫3cos(t)dt
= 3∫cos(t)dt
= 3sint + C
Given that at t = 0, x = 3. so
x = 3sint + C
3 = 3sin0 + C
3 = 0 + C
C = 3
So, x(t) = 3sint + 3
So, its displacement from time t = 0 to time t = π is
Δx = x(π) - x(0)
= 3sinπ + 3 - (3sin0 + 3)
= 3 × 0 + 3 - 0 - 3
= 0 + 3 - 3
= 0 + 0
= 0 m
So, the displacement of the yo-yo from time t = 0 to time t = π is 0 m
Part C: Find the total distance the yo-yo travels from time t = 0 to time t = π. (10 points)
The total distance the yo-yo travels from time t = 0 to time t = π is given by
[tex]x(t) = \int\limits^{\pi}_0 {v(t)} \, dt\\= \int\limits^{\pi }_0 {3cos(t)} \, dt\\= 3 \int\limits^{\pi }_0 {cos(t)} \, dt\\ = 3 \int\limits^{\frac{\pi }{2} }_0 {cos(t)} \, dt + 3\int\limits^{\pi }_{\frac{\pi }{2}} {cos(t)} \, dt\\= 3 \times 2\int\limits^{\frac{\pi }{2} }_0 {cos(t)} \, dt\\= 6 [{sin(t)}]^{\frac{\pi }{2} }_{0} \\= 6[{sin\frac{\pi }{2} - sin0]\\\\= 6[1 - 0]\\= 6(1)\\= 6[/tex]
So, the total distance the yo-yo travels from time t = 0 to time t = π is 6 m.
Learn more about average value of a function here:
https://brainly.com/question/15870615
#SPJ1
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.