Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
The equations exist [tex]$y =-(x+2)^2+1[/tex] and [tex]y =4x+9[/tex] then the value of
x = -6, x = -2 and y = -15, y = 1.
How to solve the system of equations [tex]$y =-(x+2)^2+1[/tex] and
[tex]y =4x+9[/tex] ?
The given equations are [tex]$y =-(x+2)^2+1[/tex] and [tex]y =4x+9[/tex]
[tex]$-\left(x\:+\:2\right)^2\:+\:1\:=\:4x\:+\:9[/tex]
[tex]$-x^{2}-4 x-3=4 x+9[/tex]
Subtract 9 from both sides, we get
[tex]$-x^{2}-4 x-3-9=4 x+9-9[/tex]
Simplifying the equation, we get
[tex]$-x^{2}-4 x-12=4 x[/tex]
Subtract 4x from both sides
[tex]$-x^{2}-4 x-12-4 x=4 x-4 x[/tex]
[tex]$-x^{2}-8 x-12=0[/tex]
Solve with the quadratic formula
[tex]$x_{1,2}=\frac{-(-8) \pm \sqrt{(-8)^{2}-4(-1)(-12)}}{2(-1)}[/tex]
[tex]$\sqrt{(-8)^{2}-4(-1)(-12)}=4[/tex]
[tex]$x_{1,2}=\frac{-(-8) \pm 4}{2(-1)}[/tex]
Separate the solutions
[tex]$x_{1}=\frac{-(-8)+4}{2(-1)}, x_{2}=\frac{-(-8)-4}{2(-1)}[/tex]
[tex]$x=\frac{-(-8)+4}{2(-1)}=-6[/tex]
[tex]$x=\frac{-(-8)-4}{2(-1)}= \quad-2[/tex]
The solutions to the quadratic equation are x = -6, x = -2
From the above equation [tex]y =4x+9[/tex],
substitute the value of x, then we get
Put, x = -6 then y = 4(-6) + 9 = -15
Put, x = -2 then y = 4(-2) + 9 = 1
The system of equations exists (–2, 1) and (–6, –15).
Therefore, the correct answer is (–2, 1) and (–6, –15).
To learn more about quadratic equations refer to:
https://brainly.com/question/1214333
#SPJ4
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.