Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Answer:
The braking distance would be about nine times as long (assuming that acceleration during braking stays the same.)
Explanation:
Let [tex]u[/tex] denote the initial velocity of the vehicle ([tex]20\; \text{mph}[/tex] or [tex]60\; \text{mph}[/tex]) and let [tex]v[/tex] denote the velocity of the vehicle after braking ([tex]0\; \text{mph}[/tex]). Let [tex]x[/tex] denote the braking distance.
Assume that the acceleration during braking are both constantly [tex]a[/tex] in both scenarios. The SUVAT equations would apply. In particular:
[tex]\begin{aligned} x &= \frac{v^{2} - u^{2}}{2\, a}\end{aligned}[/tex].
Since [tex]v = 0[/tex] (the vehicle has completely stopped), the equation becomes [tex]x = (-u^{2}) / (2\, a)[/tex].
Assuming that [tex]a[/tex] (braking acceleration) stays the same, the braking distance [tex]x[/tex] would be proportional to [tex]u^{2}[/tex], the square of the initial velocity.
Hence, increasing the initial speed from [tex]20\; \text{mph}[/tex] to [tex]60\; \text{mph}[/tex] would increase the braking distance by a factor of [tex]3^{2} = 9[/tex].
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.