Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
k = 33
Step-by-step explanation:
Terminating decimal numbers: Decimals that have a finite number of decimal places.
For a decimal to be terminating, the factors of the denominator must only contain 2 and/or 5. As 2 and 5 are prime numbers, use prime factorization to rewrite the denominator.
Prime factorization of 660:
⇒ 660 = 2 × 2 × 3 × 5 × 11
⇒ 660 = 2² × 3 × 5 × 11
Therefore:
[tex]\implies \sf \dfrac{k}{660}=\dfrac{k}{2^2 \cdot 3 \cdot 5 \cdot 11}[/tex]
The fraction will only be a terminating decimal if both 3 and 11 in the denominator are canceled out. To do this, their lowest common multiple must be the numerator:
⇒ LCM of 3 and 11 = 3 × 11 = 33
[tex]\implies \sf \dfrac{33}{660}[/tex]
[tex]\implies \sf k=33[/tex]
Therefore, the smallest positive integer k such that k/660 can be expressed as a terminating decimal is 33.
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.