Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Discover solutions to your questions from experienced professionals across multiple fields on our comprehensive Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Please helppppp!!
Question #1 (Question un ) : What is the smallest positive integer k such that k/660 can be expressed as a terminating decimal?

Give BRAINLIST IF ANSWER!!!!!


Sagot :

Answer:

k = 33

Step-by-step explanation:

Terminating decimal numbers:  Decimals that have a finite number of decimal places.

For a decimal to be terminating, the factors of the denominator must only contain 2 and/or 5.  As 2 and 5 are prime numbers, use prime factorization to rewrite the denominator.

Prime factorization of 660:

⇒ 660 = 2 × 2 × 3 × 5 × 11

⇒ 660 = 2² × 3 × 5 × 11

Therefore:

[tex]\implies \sf \dfrac{k}{660}=\dfrac{k}{2^2 \cdot 3 \cdot 5 \cdot 11}[/tex]

The fraction will only be a terminating decimal if both 3 and 11 in the denominator are canceled out.  To do this, their lowest common multiple must be the numerator:

⇒ LCM of 3 and 11 = 3 × 11 = 33

[tex]\implies \sf \dfrac{33}{660}[/tex]

[tex]\implies \sf k=33[/tex]

Therefore, the smallest positive integer k such that k/660 can be expressed as a terminating decimal is 33.

Answer:

33

Step-by-step explanation:

We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.