Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
Answer:
67 square units
Step-by-step explanation:
The area using the left-hand sum is the sum of products of the function value at the left side of the interval and the width of the interval.
Area
The attachment shows a table of the x-value at the left side of each interval, and the corresponding function value there. The interval width is 1 unit in every case, so the desired area is simply the sum of the function values.
The approximate area is 67 square units.
Split up the interval [0, 6] into 6 equally spaced subintervals of length [tex]\Delta x = \frac{6-0}6 = 1[/tex]. So we have the partition
[0, 1] U [1, 2] U [2, 3] U [3, 4] U [4, 5] U [5, 6]
where the left endpoint of the [tex]i[/tex]-th interval is
[tex]\ell_i = i - 1[/tex]
with [tex]i\in\{1,2,3,4,5,6\}[/tex].
The area under [tex]f(x)=x^2+2[/tex] on the interval [0, 6] is then given by the definite integral and approximated by the Riemann sum,
[tex]\displaystyle \int_0^6 f(x) \, dx \approx \sum_{i=1}^6 f(\ell_i) \Delta x \\\\ ~~~~~~~~ = \sum_{i=1}^6 \bigg((i-1)^2 + 2\bigg) \\\\ ~~~~~~~~ = \sum_{i=1}^6 \bigg(i^2 - 2i + 3\bigg) \\\\ ~~~~~~~~ = \frac{6\cdot7\cdot13}6 - 6\cdot7 + 3\cdot6 = \boxed{67}[/tex]
where we use the well-known sums,
[tex]\displaystyle \sum_{i=1}^n 1 = \underbrace{1 + 1 + \cdots + 1}_{n\,\rm times} = n[/tex]
[tex]\displaystyle \sum_{i=1}^n i = 1 + 2 + \cdots + n = \frac{n(n+1)}2[/tex]
[tex]\displaystyle \sum_{i=1}^n i^2 = 1 + 4 + \cdots + n^2 = \frac{n(n+1)(2n+1)}6[/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.