Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Answer:
67 square units
Step-by-step explanation:
The area using the left-hand sum is the sum of products of the function value at the left side of the interval and the width of the interval.
Area
The attachment shows a table of the x-value at the left side of each interval, and the corresponding function value there. The interval width is 1 unit in every case, so the desired area is simply the sum of the function values.
The approximate area is 67 square units.
Split up the interval [0, 6] into 6 equally spaced subintervals of length [tex]\Delta x = \frac{6-0}6 = 1[/tex]. So we have the partition
[0, 1] U [1, 2] U [2, 3] U [3, 4] U [4, 5] U [5, 6]
where the left endpoint of the [tex]i[/tex]-th interval is
[tex]\ell_i = i - 1[/tex]
with [tex]i\in\{1,2,3,4,5,6\}[/tex].
The area under [tex]f(x)=x^2+2[/tex] on the interval [0, 6] is then given by the definite integral and approximated by the Riemann sum,
[tex]\displaystyle \int_0^6 f(x) \, dx \approx \sum_{i=1}^6 f(\ell_i) \Delta x \\\\ ~~~~~~~~ = \sum_{i=1}^6 \bigg((i-1)^2 + 2\bigg) \\\\ ~~~~~~~~ = \sum_{i=1}^6 \bigg(i^2 - 2i + 3\bigg) \\\\ ~~~~~~~~ = \frac{6\cdot7\cdot13}6 - 6\cdot7 + 3\cdot6 = \boxed{67}[/tex]
where we use the well-known sums,
[tex]\displaystyle \sum_{i=1}^n 1 = \underbrace{1 + 1 + \cdots + 1}_{n\,\rm times} = n[/tex]
[tex]\displaystyle \sum_{i=1}^n i = 1 + 2 + \cdots + n = \frac{n(n+1)}2[/tex]
[tex]\displaystyle \sum_{i=1}^n i^2 = 1 + 4 + \cdots + n^2 = \frac{n(n+1)(2n+1)}6[/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.