Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
Approximately [tex]4.2\; {\rm s}[/tex] (assuming that the projectile was launched at angle of [tex]35^{\circ}[/tex] above the horizon.)
Explanation:
Initial vertical component of velocity:
[tex]\begin{aligned}v_{y} &= v\, \sin(35^{\circ}) \\ &= (36\; {\rm m\cdot s^{-1}})\, (\sin(35^{\circ})) \\ &\approx 20.6\; {\rm m\cdot s^{-1}}\end{aligned}[/tex].
The question assumed that there is no drag on this projectile. Additionally, the altitude of this projectile just before landing [tex]y_{1}[/tex] is the same as the altitude [tex]y_{0}[/tex] at which this projectile was launched: [tex]y_{0} = y_{1}[/tex].
Hence, the initial vertical velocity of this projectile would be the exact opposite of the vertical velocity of this projectile right before landing. Since the initial vertical velocity is [tex]20.6\; {\rm m\cdot s^{-1}}[/tex] (upwards,) the vertical velocity right before landing would be [tex](-20.6\; {\rm m\cdot s^{-1}})[/tex] (downwards.) The change in vertical velocity is:
[tex]\begin{aligned}\Delta v_{y} &= (-20.6\; {\rm m\cdot s^{-1}}) - (20.6\; {\rm m\cdot s^{-1}}) \\ &= -41.2\; {\rm m\cdot s^{-1}}\end{aligned}[/tex].
Since there is no drag on this projectile, the vertical acceleration of this projectile would be [tex]g[/tex]. In other words, [tex]a = g = -9.81\; {\rm m\cdot s^{-2}}[/tex].
Hence, the time it takes to achieve a (vertical) velocity change of [tex]\Delta v_{y}[/tex] would be:
[tex]\begin{aligned} t &= \frac{\Delta v_{y}}{a_{y}} \\ &= \frac{-41.2\; {\rm m\cdot s^{-1}}}{-9.81\; {\rm m\cdot s^{-2}}} \\ &\approx 4.2\; {\rm s} \end{aligned}[/tex].
Hence, this projectile would be in the air for approximately [tex]4.2\; {\rm s}[/tex].
Answer:
4.21 s
Explanation:
Vertical component of velocity = 36 sin 35 = 20.649 m/s
Vertical position is given by
yf = y0 + vo t - 1/2 at^2 yf = yo = 0 (ground level)
0 = 0 + 20.649 m/s * t - 1/2(9.81)t^2
t ( 20.649 - 4.905 t) = 0 show t = 0 and 4.21 s
the t = 0 is launch 4.21 seconds is landing
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.