Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Answer:
Approximately [tex]4.2\; {\rm s}[/tex] (assuming that the projectile was launched at angle of [tex]35^{\circ}[/tex] above the horizon.)
Explanation:
Initial vertical component of velocity:
[tex]\begin{aligned}v_{y} &= v\, \sin(35^{\circ}) \\ &= (36\; {\rm m\cdot s^{-1}})\, (\sin(35^{\circ})) \\ &\approx 20.6\; {\rm m\cdot s^{-1}}\end{aligned}[/tex].
The question assumed that there is no drag on this projectile. Additionally, the altitude of this projectile just before landing [tex]y_{1}[/tex] is the same as the altitude [tex]y_{0}[/tex] at which this projectile was launched: [tex]y_{0} = y_{1}[/tex].
Hence, the initial vertical velocity of this projectile would be the exact opposite of the vertical velocity of this projectile right before landing. Since the initial vertical velocity is [tex]20.6\; {\rm m\cdot s^{-1}}[/tex] (upwards,) the vertical velocity right before landing would be [tex](-20.6\; {\rm m\cdot s^{-1}})[/tex] (downwards.) The change in vertical velocity is:
[tex]\begin{aligned}\Delta v_{y} &= (-20.6\; {\rm m\cdot s^{-1}}) - (20.6\; {\rm m\cdot s^{-1}}) \\ &= -41.2\; {\rm m\cdot s^{-1}}\end{aligned}[/tex].
Since there is no drag on this projectile, the vertical acceleration of this projectile would be [tex]g[/tex]. In other words, [tex]a = g = -9.81\; {\rm m\cdot s^{-2}}[/tex].
Hence, the time it takes to achieve a (vertical) velocity change of [tex]\Delta v_{y}[/tex] would be:
[tex]\begin{aligned} t &= \frac{\Delta v_{y}}{a_{y}} \\ &= \frac{-41.2\; {\rm m\cdot s^{-1}}}{-9.81\; {\rm m\cdot s^{-2}}} \\ &\approx 4.2\; {\rm s} \end{aligned}[/tex].
Hence, this projectile would be in the air for approximately [tex]4.2\; {\rm s}[/tex].
Answer:
4.21 s
Explanation:
Vertical component of velocity = 36 sin 35 = 20.649 m/s
Vertical position is given by
yf = y0 + vo t - 1/2 at^2 yf = yo = 0 (ground level)
0 = 0 + 20.649 m/s * t - 1/2(9.81)t^2
t ( 20.649 - 4.905 t) = 0 show t = 0 and 4.21 s
the t = 0 is launch 4.21 seconds is landing
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.