Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
[tex]y=x^5-3\\ y'=5x^4\\\\ 5x^4=0\\ x=0\\ 0\in [-2,1]\\\\ y''=20x^3\\\\
y''(0)=20\cdot0^3=0[/tex]
The value of the second derivative for [tex]x=0[/tex] is neither positive nor negative, so you can't tell whether this point is a minimum or a maximum. You need to check the values of the first derivative around the point.
But the value of [tex]5x^4[/tex] is always positive for [tex]x\in\mathbb{R}\setminus \{0\}[/tex]. That means at [tex]x=0[/tex] there's neither minimum nor maximum.
The maximum must be then at either of the endpoints of the interval [tex][-2,1][/tex].
The function [tex]y[/tex] is increasing in its entire domain, so the maximum value is at the right endpoint of the interval.
[tex]y_{max}=y(1)=1^5-3=-2[/tex]
The value of the second derivative for [tex]x=0[/tex] is neither positive nor negative, so you can't tell whether this point is a minimum or a maximum. You need to check the values of the first derivative around the point.
But the value of [tex]5x^4[/tex] is always positive for [tex]x\in\mathbb{R}\setminus \{0\}[/tex]. That means at [tex]x=0[/tex] there's neither minimum nor maximum.
The maximum must be then at either of the endpoints of the interval [tex][-2,1][/tex].
The function [tex]y[/tex] is increasing in its entire domain, so the maximum value is at the right endpoint of the interval.
[tex]y_{max}=y(1)=1^5-3=-2[/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.