Get the answers you need at Westonci.ca, where our expert community is always ready to help with accurate information. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
[tex]y=x^5-3\\ y'=5x^4\\\\ 5x^4=0\\ x=0\\ 0\in [-2,1]\\\\ y''=20x^3\\\\
y''(0)=20\cdot0^3=0[/tex]
The value of the second derivative for [tex]x=0[/tex] is neither positive nor negative, so you can't tell whether this point is a minimum or a maximum. You need to check the values of the first derivative around the point.
But the value of [tex]5x^4[/tex] is always positive for [tex]x\in\mathbb{R}\setminus \{0\}[/tex]. That means at [tex]x=0[/tex] there's neither minimum nor maximum.
The maximum must be then at either of the endpoints of the interval [tex][-2,1][/tex].
The function [tex]y[/tex] is increasing in its entire domain, so the maximum value is at the right endpoint of the interval.
[tex]y_{max}=y(1)=1^5-3=-2[/tex]
The value of the second derivative for [tex]x=0[/tex] is neither positive nor negative, so you can't tell whether this point is a minimum or a maximum. You need to check the values of the first derivative around the point.
But the value of [tex]5x^4[/tex] is always positive for [tex]x\in\mathbb{R}\setminus \{0\}[/tex]. That means at [tex]x=0[/tex] there's neither minimum nor maximum.
The maximum must be then at either of the endpoints of the interval [tex][-2,1][/tex].
The function [tex]y[/tex] is increasing in its entire domain, so the maximum value is at the right endpoint of the interval.
[tex]y_{max}=y(1)=1^5-3=-2[/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.