Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Answer:
1) Two real roots
2) Two real roots
Step-by-step explanation:
[tex]\boxed{\begin{minipage}{6.8 cm}\underline{Discriminant}\\\\$b^2-4ac$ \quad when $ax^2+bx+c=0$\\\\when $b^2-4ac > 0 \implies$ two real roots\\when $b^2-4ac=0 \implies$ one real root\\when $b^2-4ac < 0 \implies$ no real roots\\\end{minipage}}[/tex]
Question 1
[tex]\textsf{Given equation}: \quad x^2+4x+3=0[/tex]
[tex]\textsf{Therefore}: \quad a = 1, \:\:b = 4, \:\:c = 3[/tex]
Substitute these values into the discriminant formula:
[tex]\begin{aligned} \implies b^2-4ac & = 4^2-4(1)(3)\\ & =16-12\\ & =4\end{aligned}[/tex]
[tex]\textsf{As }\:b^2-4ac =4 > 0 \implies \textsf{two real roots}[/tex]
Question 2
[tex]\textsf{Given equation}: \quad x^2-5x+4=0[/tex]
[tex]\textsf{Therefore}: \quad a = 1, \:\:b = -5, \:\:c = 4[/tex]
Substitute these values into the discriminant formula:
[tex]\begin{aligned} \implies b^2-4ac & = (-5)^2-4(1)(4)\\ & =25-16\\ & =9\end{aligned}[/tex]
[tex]\textsf{As }\:b^2-4ac =9 > 0 \implies \textsf{two real roots}[/tex]
Learn more about the discriminant here:
https://brainly.com/question/27869538
https://brainly.com/question/27796651
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.