Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Answer:
[tex]x^5+4x^3+x^3-4x+3+\dfrac{10x+5}{6x^2+5x+3}[/tex]
Step-by-step explanation:
Given expression:
[tex]\dfrac{6x^7 + 29x^6 + 29x^5 + 17x^4 - 21x^3 - 2x^2 + 13x + 14}{6x^2 + 5x + 3}[/tex]
As the leading coefficient of the divisor is not 1, divide the dividend and divisor by the leading coefficient of the divisor (6):
[tex]\implies \dfrac{\dfrac{6}{6}x^7+\dfrac{29}{6}x^6+\dfrac{29}{6}x^5+\dfrac{17}{6}x^4-\dfrac{21}{6}x^3-\dfrac{2}{6}x^2+\dfrac{13}{6}x+\dfrac{14}{6}}{\dfrac{6}{6}x^2+\dfrac{5}{6}x+\dfrac{3}{6}}[/tex]
[tex]\implies \dfrac{x^7+\dfrac{29}{6}x^6+\dfrac{29}{6}x^5+\dfrac{17}{6}x^4-\dfrac{7}{2}x^3-\dfrac{1}{3}x^2+\dfrac{13}{6}x+\dfrac{7}{3}}{x^2+\dfrac{5}{6}x+\dfrac{1}{2}}[/tex]
Write the opposite sign of the coefficient of the x term and the constant term of the divisor on the outside of the synthetic division box. Write the coefficients of all the terms of the dividend inside the synthetic division box in descending order. As there are no missing terms, there is no need to use any zeros.
[tex]\begin{array}{rr|rrrrrrrr}-\dfrac{5}{6}&-\dfrac{1}{2}&1&\dfrac{29}{6}&\dfrac{29}{6}&\dfrac{17}{6}&-\dfrac{7}{2}&-\dfrac{1}{3}&\dfrac{13}{6}&\dfrac{7}{3}\\&&&\phantom{\dfrac12}&&&&&&\\\cline{3-10} &\phantom{\dfrac12}&&&&&&&&\\\phantom{\dfrac12}&&&&&&&&&\\ \cline{3-10} \end{array}[/tex]
Perform synthetic division:
[tex]\begin{array}{rr|rrrrrrrr}-\dfrac{5}{6}&-\dfrac{1}{2}&1&\dfrac{29}{6}&\dfrac{29}{6}&\dfrac{17}{6}&-\dfrac{7}{2}&-\dfrac{1}{3}&\dfrac{13}{6}&\dfrac{7}{3}\\&&&\phantom{\dfrac12}&-\frac{1}{2}&-2&-\frac{1}{2}&0&2&-\frac{3}{2}\\\cline{3-10} &\phantom{\dfrac12}&&\frac{29}{6} & \frac{13}{3}& \frac{5}{6}& -4&-\frac{1}{3}&\frac{25}{6}&\\\phantom{\dfrac12}&&&-\frac{5}{6}&-\frac{10}{3} & -\frac{5}{6}&0&\frac{10}{3} & -\frac{5}{2}&\\ \cline{3-10} \phantom{\dfrac12}&&1&4&1&0&-4&3&\frac{5}{3} & \frac{5}{6}\end{array}[/tex]
Since the leading coefficient of the dividend is 7 and the leading coefficient of the divisor is 2, the leading exponent of the quotient will be 7 - 2 = 5.
Therefore:
[tex]\textsf{Quotient}: \quad 1x^5+4x^4+1x^3+0x^2-4x+3[/tex]
[tex]\textsf{Remainder}: \quad \dfrac{5}{3}x+\dfrac{5}{6}[/tex]
[tex]\implies x^5+4x^3+x^3-4x+3+\dfrac{\frac{5}{3}x+\frac{5}{6}}{x^2+\frac{5}{6}x+\frac{1}{2}}[/tex]
Multiply the rational remainder by 6/6 so that its denominator is in the original form of the divisor:
[tex]\implies x^5+4x^3+x^3-4x+3+\left(\dfrac{\frac{5}{3}x+\frac{5}{6}}{x^2+\frac{5}{6}x+\frac{1}{2}}\right) \cdot \dfrac{6}{6}[/tex]
[tex]\implies x^5+4x^3+x^3-4x+3+\dfrac{10x+5}{6x^2+5x+3}[/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.