Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
[tex]x^5+4x^3+x^3-4x+3+\dfrac{10x+5}{6x^2+5x+3}[/tex]
Step-by-step explanation:
Given expression:
[tex]\dfrac{6x^7 + 29x^6 + 29x^5 + 17x^4 - 21x^3 - 2x^2 + 13x + 14}{6x^2 + 5x + 3}[/tex]
As the leading coefficient of the divisor is not 1, divide the dividend and divisor by the leading coefficient of the divisor (6):
[tex]\implies \dfrac{\dfrac{6}{6}x^7+\dfrac{29}{6}x^6+\dfrac{29}{6}x^5+\dfrac{17}{6}x^4-\dfrac{21}{6}x^3-\dfrac{2}{6}x^2+\dfrac{13}{6}x+\dfrac{14}{6}}{\dfrac{6}{6}x^2+\dfrac{5}{6}x+\dfrac{3}{6}}[/tex]
[tex]\implies \dfrac{x^7+\dfrac{29}{6}x^6+\dfrac{29}{6}x^5+\dfrac{17}{6}x^4-\dfrac{7}{2}x^3-\dfrac{1}{3}x^2+\dfrac{13}{6}x+\dfrac{7}{3}}{x^2+\dfrac{5}{6}x+\dfrac{1}{2}}[/tex]
Write the opposite sign of the coefficient of the x term and the constant term of the divisor on the outside of the synthetic division box. Write the coefficients of all the terms of the dividend inside the synthetic division box in descending order. As there are no missing terms, there is no need to use any zeros.
[tex]\begin{array}{rr|rrrrrrrr}-\dfrac{5}{6}&-\dfrac{1}{2}&1&\dfrac{29}{6}&\dfrac{29}{6}&\dfrac{17}{6}&-\dfrac{7}{2}&-\dfrac{1}{3}&\dfrac{13}{6}&\dfrac{7}{3}\\&&&\phantom{\dfrac12}&&&&&&\\\cline{3-10} &\phantom{\dfrac12}&&&&&&&&\\\phantom{\dfrac12}&&&&&&&&&\\ \cline{3-10} \end{array}[/tex]
Perform synthetic division:
[tex]\begin{array}{rr|rrrrrrrr}-\dfrac{5}{6}&-\dfrac{1}{2}&1&\dfrac{29}{6}&\dfrac{29}{6}&\dfrac{17}{6}&-\dfrac{7}{2}&-\dfrac{1}{3}&\dfrac{13}{6}&\dfrac{7}{3}\\&&&\phantom{\dfrac12}&-\frac{1}{2}&-2&-\frac{1}{2}&0&2&-\frac{3}{2}\\\cline{3-10} &\phantom{\dfrac12}&&\frac{29}{6} & \frac{13}{3}& \frac{5}{6}& -4&-\frac{1}{3}&\frac{25}{6}&\\\phantom{\dfrac12}&&&-\frac{5}{6}&-\frac{10}{3} & -\frac{5}{6}&0&\frac{10}{3} & -\frac{5}{2}&\\ \cline{3-10} \phantom{\dfrac12}&&1&4&1&0&-4&3&\frac{5}{3} & \frac{5}{6}\end{array}[/tex]
Since the leading coefficient of the dividend is 7 and the leading coefficient of the divisor is 2, the leading exponent of the quotient will be 7 - 2 = 5.
Therefore:
[tex]\textsf{Quotient}: \quad 1x^5+4x^4+1x^3+0x^2-4x+3[/tex]
[tex]\textsf{Remainder}: \quad \dfrac{5}{3}x+\dfrac{5}{6}[/tex]
[tex]\implies x^5+4x^3+x^3-4x+3+\dfrac{\frac{5}{3}x+\frac{5}{6}}{x^2+\frac{5}{6}x+\frac{1}{2}}[/tex]
Multiply the rational remainder by 6/6 so that its denominator is in the original form of the divisor:
[tex]\implies x^5+4x^3+x^3-4x+3+\left(\dfrac{\frac{5}{3}x+\frac{5}{6}}{x^2+\frac{5}{6}x+\frac{1}{2}}\right) \cdot \dfrac{6}{6}[/tex]
[tex]\implies x^5+4x^3+x^3-4x+3+\dfrac{10x+5}{6x^2+5x+3}[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.