Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Answer:
(1.79, 7.58)
Step-by-step explanation:
Standard form equation of a circle with center (h,k) and radius r is
[tex]\displaystyle{(x-h)^2+(y-k)^2=r^2}[/tex]
Use h = 0, k = 4 and r=4 to give
--> [tex]\displaystyle{(x-0)^2+(y-4)^2=4^2}[/tex]
--> [tex]x^2 + (y-4)^2 = 16[/tex]
[tex](y-4)^2 = y^2 -8y + 16[/tex]
The line is [tex]y = 2x + 4[/tex]
Substitute for this value of y in Equation (1)
[tex]x^2 + (2x + 4 - 4)^2 = 16[/tex]
[tex]x^2 + (2x)^2 = 16[/tex]
[tex]x^2 + 4x^2 = 16[/tex]
[tex]5x^2 = 16[/tex]
[tex]x^2 = \frac{16}{5}[/tex]
[tex]x = \pm \sqrt{\frac{16}{5}}[/tex]
[tex]x = \pm \frac{4}{\sqrt{5}}[/tex]
Since we are asked to find point of intersection only on the first quadrant, we ignore the negative value of x
So [tex]x = \frac{4}{\sqrt{5} } = 1.78885 = 1.79[/tex] (rounded to 2 decimal places)
Substituting this value of x in [tex]y = 2x + 4[/tex]
[tex]y = 2(1.79) = 4 = 7.58[/tex]
So the intersection point is at
(1.79, 7.58)
See attached graph
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.