Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Using the law of sines and the law of cosines, the solutions for the triangle are given as follows:
- A = 34.52º.
- B = 31.48º.
- c = 108.
What is the law of cosines?
The law of cosines states that we can find the side c of a triangle as follows:
c² = a² + b² - 2abcos(C)
In which:
- C is the angle opposite to side c.
- a and b are the lengths of the other sides.
For this problem, side c is found using the law of cosines, as follows:
c² = 67² + 62² - 2(67)(62)cos(114º)
c² = 11712.17
c = sqrt(11712.17)
c = 108.
What is the law of sines?
Suppose we have a triangle in which:
- The length of the side opposite to angle A is a.
- The length of the side opposite to angle B is b.
- The length of the side opposite to angle C is c.
The lengths and the sine of the angles are related as follows:
[tex]\frac{\sin{A}}{a} = \frac{\sin{B}}{b} = \frac{\sin{C}}{c}[/tex]
Angle A can be found as follows:
[tex]\frac{\sin{A}}{67} = \frac{\sin{114^\circ}}{108}[/tex]
[tex]\sin{A} = \frac{67\sin{114^\circ}}{108}[/tex]
sin(A) = 0.5667365339
A = arcsin(0.5667365339)
A = 34.52º.
The sum of the internal angles of a triangle is of 180º, hence we use it to find angle B as follows:
34.52 + B + 114 = 180
B = 180 - (34.52 + 114)
B = 31.48º.
More can be learned about the law of sines at https://brainly.com/question/25535771
#SPJ1
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.