Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
By using compound interest, it is found that the annual rate of increase was of 0.132%.
Given,
Valuation of 12 million php on 1st January 2007
8 million php on 1st January 2012.
Annual rate of change - ?
The amount of money earned, in compound interest after t years, is given as follows:
[tex]A(t) = P (1 +\frac{r}{n}) ^{nt}[/tex]
For this problem, the parameters are:
t = 5, A(t) = 6, A(0) = 12, n = 12.
Here,
P is the principal which is the initial sum of money.
A(t) is considered the amount of money after t years.
n is the number of times where interest is compounded.
r is the interest rate.
Thus, we solve for r to find the interest rate as follows:
[tex]A(t) = P (1 + \frac{r}{n}) ^{nt}[/tex]
[tex]8 = 12 (1 + \frac{r}{12}) ^{12X5}[/tex]
[tex](1 + \frac{r}{12})^{60} = 0.66[/tex]
[tex]\sqrt[60]{1 + \frac{r}{12}} ^{60}[/tex] = [tex]\sqrt[60]{0.66}[/tex]
[tex]1 + \frac{r}{12} = (0.66)^{\frac{1}{60}}[/tex]
1 + r/12 = 1.011
r/12 = 0.011
r = 12 x 0.011
r = 0.132
Hence, the annual rate of increase is of 0.132%.
To learn more about compound interest here:
https://brainly.com/question/14295570
#SPJ4
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.