Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
By using compound interest, it is found that the annual rate of increase was of 0.132%.
Given,
Valuation of 12 million php on 1st January 2007
8 million php on 1st January 2012.
Annual rate of change - ?
The amount of money earned, in compound interest after t years, is given as follows:
[tex]A(t) = P (1 +\frac{r}{n}) ^{nt}[/tex]
For this problem, the parameters are:
t = 5, A(t) = 6, A(0) = 12, n = 12.
Here,
P is the principal which is the initial sum of money.
A(t) is considered the amount of money after t years.
n is the number of times where interest is compounded.
r is the interest rate.
Thus, we solve for r to find the interest rate as follows:
[tex]A(t) = P (1 + \frac{r}{n}) ^{nt}[/tex]
[tex]8 = 12 (1 + \frac{r}{12}) ^{12X5}[/tex]
[tex](1 + \frac{r}{12})^{60} = 0.66[/tex]
[tex]\sqrt[60]{1 + \frac{r}{12}} ^{60}[/tex] = [tex]\sqrt[60]{0.66}[/tex]
[tex]1 + \frac{r}{12} = (0.66)^{\frac{1}{60}}[/tex]
1 + r/12 = 1.011
r/12 = 0.011
r = 12 x 0.011
r = 0.132
Hence, the annual rate of increase is of 0.132%.
To learn more about compound interest here:
https://brainly.com/question/14295570
#SPJ4
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.