Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
By power transmitted by string, the frequency must be 163.31 Hz.
We need to know about power transmitted to solve this problem. The power transmitted by a wave on string can be determined by this equation
P = 1/2 . μ . ω² . A² . v
where P is the power, μ is mass per unit length of string, ω is angular speed, A is amplitude and v is wave propagation speed.
the wave propagation can be determined as
v = √(F.l/m)
where F is the string tension, l is length and m is the mass.
From the question above, we know that:
l = 2.7 m
m = 260 g = 0.26 kg
F = 36 N
A = 7.7 mm = 0.0077 m
P = 58 W
Find the mass per unit length
μ = m / l
μ = 0.26 / 2.7
μ = 0.096 kg / m
Find the wave propagation speed
v = √(F.l/m)
v = √(36. 2.7 /0.26)
v = √(373.85)
v = 19.34 m/s
Find the angular speed
P = 1/2 . μ . ω² . A² . v
58 = 1/2 . 0.096 . ω² . 0.0077² . 19.34
ω² = 1053777.29
ω = √1053777.29
ω = 1026.54 rad/s
Find the frequency
ω = 2πf
1026.54 = 2 . 3.14 . f
f = 163.31 Hz
Find more on power at: https://brainly.com/question/20229870
#SPJ4
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.