At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Ask your questions and receive precise answers from experienced professionals across different disciplines. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
3 number of roots exist for the polynomial function.
Step-by-step explanation:
As we know that the polynomial can only have exact number of roots as high as the degree of that polynomial is.
We can also prove it. Assume there is a polynomial
(x+2)(x+3) =0
Here the degree of the polynomial is 2 and the number of possible solutions are also 2. As it is evident that x is either equal to -2 or -3.
From the given condition,
(9x + 7)(4x + 1)(3x + 4)
we know that the degree of the polynomial is 3 because after expansion it becomes,
108x^3 + 255 x^2 +169x + 28 =0
Since, highest power of the variable is 3. Its degree is 3.
Therefore, possible number of roots that exist for the polynomial function are 3.
You can learn more about number of roots of polynomials from
https://brainly.com/question/10702726
#SPJ4
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.