At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Answer:
Approximately [tex]1.69 \times 10^{-23}\; {\rm N}[/tex].
Explanation:
Look up the value of Coulomb's Constant: [tex]k \approx 8.988 \times 10^{-9}\; {\rm N \cdot m^{2} \cdot C^{-2}}[/tex].
Consider point charges of magnitude [tex]q_{1}[/tex] and [tex]q_{2}[/tex]. If the distance between these charges is [tex]r[/tex], the magnitude of the electrostatic force between them would be [tex](k\, q_{1}\, q_{2}) / (r^{2})[/tex].
In this question, the two [tex](+q)[/tex] charges are [tex]5\; {\rm cm}[/tex] and [tex]3\; {\rm cm}[/tex] away from the center [tex](-2\, q)[/tex] charge, respectively. Convert units to standard unit of distance (meters, [tex]{\rm m}[/tex]) and charge (coulombs, [tex]{\rm C}[/tex]):
[tex]q = 1.15 \; {\rm nC} = 1.15 \times 10^{-9}\; {\rm C}[/tex].
[tex]\begin{aligned} 5\; {\rm cm} = 5\; {\rm cm} \times \frac{1\; {\rm m}}{100\; {\rm cm}} = 0.05\; {\rm m} \end{aligned}[/tex].
[tex]\begin{aligned} 3\; {\rm cm} = 3\; {\rm cm} \times \frac{1\; {\rm m}}{100\; {\rm cm}} = 0.03\; {\rm m} \end{aligned}[/tex].
The magnitude of the electrostatic forces on the [tex](-2\, q)[/tex] charge would be:
[tex]\begin{aligned}\frac{k\, q_{1}\, q_{2}}{r^{2}} &\approx \frac{1}{(0.05\; {\rm m})^{2}} \\ &\quad \times (8.988 \times 10^{-9}\; {\rm N \cdot m^{2} \cdot C^{-2}})\\ &\quad \times ((-2) \, (1.15\times 10^{-9}\; {\rm C}))\, (1.15\times 10^{-9}\; {\rm C})) \\ &\approx 9.509\times 10^{-24}\; {\rm N}\end{aligned}[/tex].
[tex]\begin{aligned}\frac{k\, q_{1}\, q_{2}}{r^{2}} &\approx \frac{1}{(0.03\; {\rm m})^{2}} \\ &\quad \times (8.988 \times 10^{-9}\; {\rm N \cdot m^{2} \cdot C^{-2}})\\ &\quad \times ((-2) \, (1.15\times 10^{-9}\; {\rm C}))\, (1.15\times 10^{-9}\; {\rm C})) \\ &\approx 2.641\times 10^{-23}\; {\rm N}\end{aligned}[/tex].
Since the charges are of opposite sign, the [tex](-2\, q)[/tex] charge would attract both of the [tex](+q)[/tex] charges. In particular, the (approximately) [tex]9.509\times 10^{-24}\; {\rm N}[/tex] force would point to the left. The (approximately) [tex]2.641 \times 10^{-23}\; {\rm N}[/tex] force would point to the right.
As a result, the net force on the [tex](-2\, q)[/tex] charge would point to the right. The magnitude of the net force on this charge would be approximately [tex]2.641 \times 10^{-23}\; {\rm N} - 9.509\times 10^{-24}\; {\rm N} \approx 1.69 \times 10^{-23}\; {\rm N}[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.