Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Solve the inequality and express your answer in interval notation.
x^2 + 12x +7 < 0


Solve The Inequality And Express Your Answer In Interval Notation X2 12x 7 Lt 0 class=

Sagot :

Solution:

B. [tex](-6-\sqrt{29},-6+\sqrt{29})[/tex]

Hope this helps! If so, lmk! Thanks and good luck!

Answer: (-6-[tex]\sqrt{29}[/tex], -6+[tex]\sqrt{29}[/tex]) ==> D

Step-by-step explanation:

x^2 + 12x +7 < 0

x^2+12x+36-29<0

(x+6)^2-29<0

(x+6)^2<29

x+6<[tex]\sqrt{29}[/tex]

x<-6+[tex]\sqrt{29}[/tex]

x+6>-[tex]\sqrt{29}[/tex]

x>-6-[tex]\sqrt{29}[/tex]

(-6-[tex]\sqrt{29}[/tex], -6+[tex]\sqrt{29}[/tex]) ==> D

-6-[tex]\sqrt{29}[/tex] and -6+[tex]\sqrt{29}[/tex] aren't included in the solution since if these values are plugged in to x^2 + 12x +7, the expression will equal 0. That's not supposed to happen. The expression is supposed to be LESS than 0.