Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.

Solve the inequality and express your answer in interval notation.
X^2+8x+5<0


Solve The Inequality And Express Your Answer In Interval Notation X28x5lt0 class=

Sagot :

Answer: (-4-[tex]\sqrt{11}[/tex], -4+[tex]\sqrt{11}[/tex]) ==> B

Step-by-step explanation:

x^2+8x+5<0

x^2+8x+16-11<0

(x+4)^2-11<0

(x+4)^2<11

x+4<[tex]\sqrt{11}[/tex]

x<-4+[tex]\sqrt{11}[/tex]

x+4>-[tex]\sqrt{11}[/tex]

x>-4-[tex]\sqrt{11}[/tex]

(-4-[tex]\sqrt{11}[/tex], -4+[tex]\sqrt{11}[/tex]) ==> B

Remember, the solution doesn't include the x values -4-[tex]\sqrt{11}[/tex] and -4+[tex]\sqrt{11}[/tex]  since if they were plugged in x^2+8x+5, the expression would equal 0. The expression is supposed to be LESS than 0, not equal to 0.

siakim

Answer:

Answer: (-4-\sqrt{11}11 , -4+\sqrt{11}11 )

x^2+8x+5<0

x^2+8x+16-11<0

(x+4)^2-11<0

(x+4)^2<11

x+4<\sqrt{11}11

x<-4+\sqrt{11}11

x+4>-\sqrt{11}11

x>-4-\sqrt{11}11

(-4-\sqrt{11}11 , -4+\sqrt{11}11 )