Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Answer:
Expression for f(x) = [tex]\frac{\sqrt{x + 1} - 4}{7}[/tex]
Domain in interval notation: [tex]\:[-1,\:\infty \:)[/tex]
Step-by-step explanation:
[tex]\textrm{Let }f(x)\text{ represent the function}[/tex]
Step 1: Add 1 to [tex]x[/tex] ==> x + 1
Step 2: Take square root ==> [tex]\sqrt{x+1}[/tex]
Step 3: Subtract 4: ==> [tex]\sqrt{x+1} - 4[/tex]
Step 4: Divide by 7 ==> [tex]\frac{\sqrt{x+1} - 4}{7}[/tex]
The expression for f(x) is [tex]\frac{\sqrt{x+1} - 4}{7}[/tex]
The domain of a function is the set of all inputs for which the function is real and defined
[tex]\sqrt{x+1}[/tex] is real only for positive values of the square root
This means
[tex]\sqrt{x+1} \ge 0[/tex]
Squaring both sides we get
[tex]x + 1 \ge 0[/tex]
Subtracting 1 from both sides we get
[tex]x \ge -1[/tex]
This is the lower limit for [tex]x.[/tex] There is no upper limit
The domain of[tex]f(x)[/tex] is therefore
[tex]x \ge -1[/tex]
In interval notation it is expressed as
[tex][-1,\infty)[/tex]
Note the square bracket on the left and parenthesis on the right. This notation means that -1 is part of the domain but [tex]\infty[/tex] is not included since at [tex]\infty[/tex] the function is not defined
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.