Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Answer:
Expression for f(x) = [tex]\frac{\sqrt{x + 1} - 4}{7}[/tex]
Domain in interval notation: [tex]\:[-1,\:\infty \:)[/tex]
Step-by-step explanation:
[tex]\textrm{Let }f(x)\text{ represent the function}[/tex]
Step 1: Add 1 to [tex]x[/tex] ==> x + 1
Step 2: Take square root ==> [tex]\sqrt{x+1}[/tex]
Step 3: Subtract 4: ==> [tex]\sqrt{x+1} - 4[/tex]
Step 4: Divide by 7 ==> [tex]\frac{\sqrt{x+1} - 4}{7}[/tex]
The expression for f(x) is [tex]\frac{\sqrt{x+1} - 4}{7}[/tex]
The domain of a function is the set of all inputs for which the function is real and defined
[tex]\sqrt{x+1}[/tex] is real only for positive values of the square root
This means
[tex]\sqrt{x+1} \ge 0[/tex]
Squaring both sides we get
[tex]x + 1 \ge 0[/tex]
Subtracting 1 from both sides we get
[tex]x \ge -1[/tex]
This is the lower limit for [tex]x.[/tex] There is no upper limit
The domain of[tex]f(x)[/tex] is therefore
[tex]x \ge -1[/tex]
In interval notation it is expressed as
[tex][-1,\infty)[/tex]
Note the square bracket on the left and parenthesis on the right. This notation means that -1 is part of the domain but [tex]\infty[/tex] is not included since at [tex]\infty[/tex] the function is not defined
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.