Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
[tex]
\cot(a-b)=\frac{\frac{1}{(x+1)(x-1)}+1}{\frac{1}{x-1}+\frac{1}{x+1}} \\ \\ =\frac{1-1+x^2}{2} \\ \\ =\frac{x^2}{2} \\ \\ \therefore 2\cot(A-B)=x^2[/tex]
Answer:
See below for proof.
Step-by-step explanation:
[tex]\boxed{\begin{minipage}{5 cm}\underline{Trigonometric Identities}\\\\$\cot \theta=\dfrac{1}{\tan \theta}$\\\\$\tan (A \pm B)=\dfrac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$\\\end{minipage}}[/tex]
[tex]\begin{aligned}\implies 2\cot (\alpha - \beta) & =\dfrac{2}{\tan (\alpha - \beta)}\\\\ & =\dfrac{2}{\dfrac{ \tan \alpha - \tan \beta}{1+\tan \alpha \tan \beta}}\\\\ & =\dfrac{2(1+\tan \alpha \tan \beta)}{ \tan \alpha - \tan \beta}\\\\ & =\dfrac{2(1+(x+1)(x-1))}{ (x+1) - (x-1)}\\\\& = \dfrac{2(1+(x^2-x+x-1))}{x+1-x+1}\\\\& = \dfrac{2(1+(x^2-1))}{2}\\\\& = \dfrac{2x^2}{2}\\\\& = x^2\end{aligned}[/tex]
Hence verifying that 2cot(α - β) = x².
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.