Welcome to Westonci.ca, your ultimate destination for finding answers to a wide range of questions from experts. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.

If tan a = x + 1 and tan ß = x - 1, then verify that: 2cot(a - B) = x²​

Sagot :

[tex]

\cot(a-b)=\frac{\frac{1}{(x+1)(x-1)}+1}{\frac{1}{x-1}+\frac{1}{x+1}} \\ \\ =\frac{1-1+x^2}{2} \\ \\ =\frac{x^2}{2} \\ \\ \therefore 2\cot(A-B)=x^2[/tex]

View image Medunno13

Answer:

See below for proof.

Step-by-step explanation:

[tex]\boxed{\begin{minipage}{5 cm}\underline{Trigonometric Identities}\\\\$\cot \theta=\dfrac{1}{\tan \theta}$\\\\$\tan (A \pm B)=\dfrac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$\\\end{minipage}}[/tex]

[tex]\begin{aligned}\implies 2\cot (\alpha - \beta) & =\dfrac{2}{\tan (\alpha - \beta)}\\\\ & =\dfrac{2}{\dfrac{ \tan \alpha - \tan \beta}{1+\tan \alpha \tan \beta}}\\\\ & =\dfrac{2(1+\tan \alpha \tan \beta)}{ \tan \alpha - \tan \beta}\\\\ & =\dfrac{2(1+(x+1)(x-1))}{ (x+1) - (x-1)}\\\\& = \dfrac{2(1+(x^2-x+x-1))}{x+1-x+1}\\\\& = \dfrac{2(1+(x^2-1))}{2}\\\\& = \dfrac{2x^2}{2}\\\\& = x^2\end{aligned}[/tex]

Hence verifying that 2cot(α - β) = x².