Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
First, see that in the time interval 3.44 to 9.49, the average velocity is [tex]2.9\text{m} / (9.49\text{s} - 3.44\text{s})=2.9\text{m}/6.05\text{s} \approx 0.479\text{m/s}[/tex]. So, as we have uniform acceleration, the velocity must be linearly increasing over this entire interval, so for the average to be 0.479 m/s over this interval, the velocity must be 0.479 m/s in the exact middle of this interval, or at 5.465s.
We now note that the object starts from rest, which means that at 0s, the velocity is 0 m/s. So, in 5.465 seconds, the velocity increases by 0.479 m/s. We again have that the object undergoes uniform acceleration, meaning that the acceleration over this interval is a constant [tex]\frac{0.479\text{m/s}}{5.465\text{s}} \approx 0.0876 \text{m/s}^2[/tex].
Finally, note again that as we are looking at uniform acceleration, by the same principle at the beginning, the average velocity of the object during the time interval from 18.6s to 22.92s is the same as the velocity at the exact middle of this interval, or at 20.76s. We have that acceleration is constant and 0.0876 m/s^2, and initial velocity is 0 at 0s. So, in 20.76 seconds, the object will have accelerated [tex]0.0876\text{m/s}^2 \cdot 20.76\text{s} \approx 1.82 \text{m/s}[/tex].
So, average velocity will be 1.82 m/s over the time interval 18.6s to 22.92s.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.