Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Find the volume V of the solid obtained by rotating the region bounded by the given curves about the specified line. Only 1 try remaining for this problem or else I get a zero. Please help if you know the answer or how to solve.

Find The Volume V Of The Solid Obtained By Rotating The Region Bounded By The Given Curves About The Specified Line Only 1 Try Remaining For This Problem Or Els class=

Sagot :

Using the shell method, the volume is

[tex]\displaystyle 2\pi \int_0^1 (2-x) \cdot 8x^3 \, dx = 16\pi \int_0^1 (2x^3 - x^4) \, dx[/tex]

Each cylindrical shell has radius [tex]2-x[/tex] (the horizontal distance from the axis of revolution to the curve [tex]y=8x^3[/tex]); has height [tex]8x^3[/tex] (the vertical distance between a point on the [tex]x[/tex]-axis in [tex]0\le x\le1[/tex] and the curve [tex]y=8x^3[/tex]).

Compute the integral.

[tex]\displaystyle 16 \pi \int_0^1 (2x^3 - x^4) \, dx = 16\pi \left(\frac{x^4}2 - \frac{x^5}5\right) \bigg|_{x=0}^{x=1} \\\\ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = 16\pi \left(\frac12 - \frac15\right) \\\\ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ = \frac{24}5\pi = \boxed{4.8\pi}[/tex]

View image LammettHash