Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
By applying the law of conservation of energy, the initial speed of this bullet is equal to 1.8456 m/s.
Given the following data:
- Mass of the bullet, m₁ = 8 kg
- Mass of the block, m₂ = 4 kg.
- Initial speed of block = 0 m/s (since it's at rest).
- Compression in the spring, x = 8.7 cm to m = 8.7 × 10 m
- Spring constant, k = 2400 N/m.
How to calculate initial speed of the bullet?
First of all, we would apply the law of conservation of momentum to derive an expression for the final velocity of both objects (bullet and block):
m₁u₁ + m₂u₂ = (m₁ + m₂)v
m₁u₁ + 0 = (m₁ + m₂)v
m₁u₁ = (m₁ + m₂)v
v = m₁u₁/(m₁ + m₂)
In order to calculate the initial speed of this bullet, we would also apply the law of conservation of energy:
K.E = U
1/2 × (m₁ + m₂)v² = 1/2kx²
Substituting the value of v, we have:
(m₁ + m₂)[m₁u₁/(m₁ + m₂)]² = kx²
m₁²u₁²/(m₁ + m₂) = kx²
m₁²u₁² = (m₁ + m₂)kx²
u₁² = [(m₁ + m₂)kx²]/m₁²
u₁ = √([(m₁ + m₂)kx²]/m₁²)
u₁ = √([(8 + 4) × 2400 × 0.087²]/8²)
u₁ = √([12 × 2400 × 0.007569]/64)
u₁ = √217.9872/64
u₁ = √3.4061
Initial speed, u₁ = 1.8456 m/s.
Read more on initial speed here: https://brainly.com/question/13966700
#SPJ1
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.