At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

a normal window has the shape of a rectangle surmounted by a semicircle. if the perimeter of the window is 34 ft, express the area A of the window as a function of the width x of the window

Sagot :

The 34 feet perimeter and width, x, of the window which is in the shape of a rectangle surmounted by a semicircle is, A = 17•x - x²•(1/2 - π/8)

How can the area of the window be expressed as a function of x?

The shape of the window = A rectangle surmounted by a semicircle

Perimeter of the window, P = 34 feet

Width of the window = x

Required; The area, A, of the window as a function of x

Solution:

Diameter of the semicircle = x

Length of the semicircular arc = π•x/2

Let y represent the height of the window, we have;

P = 2•y + x + π•x/2 = 34

Therefore;

y = (34 - (x + π•x/2))/2 = 17 - x•(1 + π/2)/2

Area of the window, A = x × y + π•x²/8

Which gives;

A = x × (17 - x•(1 + π/2)/2) + π•x²/8 = 17•x - x²/2 - x²•π/8

A = 17•x - x²/2 - x²•π/8 = 17•x - x²•(1/2 - π/8)

Therefore;

Window area, A = 17•x - x²•(1/2 - π/8)

Learn more writing equations here:

https://brainly.com/question/28158983

#SPJ1

We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.