At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Answer:
[tex]\sf (A' \cap B) \cup (A' \cap C') =\{1,6,7\}[/tex]
Step-by-step explanation:
[tex]\begin{array}{|c|c|l|} \cline{1-3} \sf Symbol & \sf N\:\!ame & \sf Meaning \\\cline{1-3} \{ \: \} & \sf Set & \sf A\:collection\:of\:elements\\\cline{1-3} \cup & \sf Union & \sf A \cup B=elements\:in\:A\:or\:B\:(or\:both)}\\\cline{1-3} \cap & \sf Intersection & \sf A \cap B=elements\: in \:both\: A \:and \:B} \\\cline{1-3} \sf ' \:or\: ^c & \sf Complement & \sf A'=elements\: not\: in\: A \\\cline{1-3} \sf - & \sf Difference & \sf A-B=elements \:in \:A \:but\: not\: in \:B}\\\cline{1-3} \end{array}[/tex]
Given sets:
- Universal = {1, 2, 3, 4, 5, 6, 7, 8}
- A = {2, 4, 5, 8}
- B = {1, 4, 6}
- C = {1, 2, 3, 4, 5}
Therefore, the complement sets are:
[tex]\begin{aligned}\sf A' & = \text{U}-\sf A\\& = \{1,2,3,4,5,6,7,8 \}- \{2,4,5,8 \}\\& = \{1,3,6,7 \}\end{aligned}[/tex]
[tex]\begin{aligned}\sf B' & = \text{U}-\sf B\\& = \{1,2,3,4,5,6,7,8 \}- \{1,4,6 \}\\& = \{2,3,5,7,8 \}\end{aligned}[/tex]
[tex]\begin{aligned}\sf C' & = \text{U}-\sf C\\& = \{1,2,3,4,5,6,7,8 \}- \{1,2,3,4,5 \}\\& = \{6,7,8 \}\end{aligned}[/tex]
Solution
[tex]\begin{aligned}\sf (A' \cap B) \cup (A' \cap C') & = \sf \left(\{1,3,6,7 \} \cap \{1,4,6\} \right) \cup \left(\{1,3,6,7 \} \cap \{6, 7, 8 \} \right)\\\\& = \sf \{1,6\} \cup \{6,7 \} \\\\& = \sf \{1,6,7\} \end{aligned}[/tex]
Learn more about set notation here:
https://brainly.com/question/28356437
https://brainly.com/question/28353607
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.