Westonci.ca is the Q&A platform that connects you with experts who provide accurate and detailed answers. Explore thousands of questions and answers from a knowledgeable community of experts ready to help you find solutions. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Find the first five terms of the recursive sequence. Show all your work. an = 3a n-1 - 6 where a1 = 7

Sagot :

Answer:  7, 15, 39, 111, 327

======================================================

Work Shown:

First replace every copy of n with 2

[tex]a_n = 3*(a_{n-1}) - 6\\\\a_2 = 3*(a_{2-1}) - 6\\\\a_2 = 3*(a_{1}) - 6\\\\a_2 = 3*(7) - 6\\\\a_2 = 21 - 6\\\\a_2 = 15\\\\[/tex]

Notice how the second term [tex]a_2[/tex] relies on the first term [tex]a_1[/tex]

Then repeat for n = 3

[tex]a_n = 3*(a_{n-1}) - 6\\\\a_3 = 3*(a_{3-1}) - 6\\\\a_3 = 3*(a_{2}) - 6\\\\a_3 = 3*(15) - 6\\\\a_3 = 45 - 6\\\\a_3 = 39\\\\[/tex]

Same goes with n = 4

[tex]a_n = 3*(a_{n-1}) - 6\\\\a_4 = 3*(a_{4-1}) - 6\\\\a_4 = 3*(a_{3}) - 6\\\\a_4 = 3*(39) - 6\\\\a_4 = 117 - 6\\\\a_4 = 111\\\\[/tex]

Finally plug in n = 5

[tex]a_n = 3*(a_{n-1}) - 6\\\\a_5 = 3*(a_{5-1}) - 6\\\\a_5 = 3*(a_{4}) - 6\\\\a_5 = 3*(111) - 6\\\\a_5 = 333 - 6\\\\a_5 = 327\\\\[/tex]

-----------------------------------

We have this summary:

[tex]a_1 = 7\\\\a_2 = 15\\\\a_3 = 39\\\\a_4 = 111\\\\a_5 = 327\\\\[/tex]

The first five terms are:  7, 15, 39, 111, 327