Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Answer:
37.9 units (nearest tenth)
Step-by-step explanation:
As ABCD is a rectangle, AD = BC and AB = DC.
Find the length of AD and AB using the distance formula.
[tex]\boxed{\begin{minipage}{7.5 cm}\underline{Distance between two points}\\\\$d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$\\\\where $(x_1,y_1)$ and $(x_2,y_2)$ are the two points.\\\end{minipage}}}[/tex]
From inspection of the given diagram:
- A = (-5, -9)
- B = (7, -5)
- D = (-7, -3)
Therefore:
[tex]\begin{aligned}AD & =\sqrt{(x_D-x_A)^2+(y_D-y_A)^2}\\& =\sqrt{(-7-(-5))^2+(-3-(-9))^2}\\& =\sqrt{(-2)^2+(6)^2}\\& =\sqrt{4+36}\\& =\sqrt{40}\end{aligned}[/tex]
[tex]\begin{aligned}AB & =\sqrt{(x_B-x_A)^2+(y_B-y_A)^2}\\& =\sqrt{(7-(-5))^2+(-5-(-9))^2}\\& =\sqrt{(12)^2+(4)^2}\\& =\sqrt{144+16}\\& =\sqrt{160}\end{aligned}[/tex]
[tex]\begin{aligned}\textsf{Perimeter of a rectangle} & = \sf 2(length + width)\\& = 2(AB+AD)\\& = 2(\sqrt{160}+\sqrt{40})\\& = 2(18.97366596...)\\& = 37.94733192...\\& = 37.9\: \sf units\:(nearest\:tenth)\end{aligned}[/tex]
Therefore, the perimeter of the rectangle ABCD is 37.9 units (nearest tenth).
Learn more about the distance formula here:
https://brainly.com/question/28144723
https://brainly.com/question/28247604
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.