Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

2) Let a =i+2j-7k and b=5i-2j+4K Find
a) a.b
b) axb
C) The direction cosine of axb
D) The Unit Vector Perpendicular to both a&b​


Sagot :

a) Dot product: recall that

i • i = j • j = k • k = 1

i • j = i • k = j • k = 0

Then

a • b = (i + 2j - 7k) • (5i - 2j + 4k)

a • b = 5 (i • i) - 4 (j • j) - 28 (k • k)

a • b = 5 - 4 - 28

a • b = -27

b) Cross product: recall that

i × i = j × j = k × k = 0

i × j = -(j × i) = k

j × k = -(k × j) = i

k × i = -(i × k) = j

Then

a × b = (i + 2j - 7k) × (5i - 2j + 4k)

a × b = -2 (i × j) + 4 (i × k) + 10 (j × i) + 8 (j × k) - 35 (k × i) + 14 (k × j)

a × b = -12 (i × j) - 6 (j × k) - 39 (k × i)

a × b = -6i - 39j - 12k

c) Recall the dot product identity

x • y = ||x|| ||y|| cos(θ)

We have

||a × b|| = √((-6)² + (-39)² + (-12)²) = 9√21

Then the direction cosines α, β, γ of a × b are

(a × b) • i = ||a × b|| ||i|| cos(α)

⇒   cos(α) = -6/(9√21) = -2/(3√21)

(a × b) • j = ||a × b|| ||j|| cos(β)

⇒   cos(β) = -39/(9√21)

(a × b) • k = ||a × b|| ||k|| cos(γ)

⇒   cos(γ) = -12/(9√21) = -4/(3√21)

d) a × b is perpendicular to both a and b, so we can get a unit vector by scaling this down by its magnitude. This is the same as the vector of direction cosines:

(a × b)/||a × b|| = (-6i - 39j - 12k)/(9√21)

(a × b)/||a × b|| = -2/(3√21) i - 39/(9√21) k - 4/(3√21) k

Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.