Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
a) Dot product: recall that
i • i = j • j = k • k = 1
i • j = i • k = j • k = 0
Then
a • b = (i + 2j - 7k) • (5i - 2j + 4k)
a • b = 5 (i • i) - 4 (j • j) - 28 (k • k)
a • b = 5 - 4 - 28
a • b = -27
b) Cross product: recall that
i × i = j × j = k × k = 0
i × j = -(j × i) = k
j × k = -(k × j) = i
k × i = -(i × k) = j
Then
a × b = (i + 2j - 7k) × (5i - 2j + 4k)
a × b = -2 (i × j) + 4 (i × k) + 10 (j × i) + 8 (j × k) - 35 (k × i) + 14 (k × j)
a × b = -12 (i × j) - 6 (j × k) - 39 (k × i)
a × b = -6i - 39j - 12k
c) Recall the dot product identity
x • y = ||x|| ||y|| cos(θ)
We have
||a × b|| = √((-6)² + (-39)² + (-12)²) = 9√21
Then the direction cosines α, β, γ of a × b are
(a × b) • i = ||a × b|| ||i|| cos(α)
⇒ cos(α) = -6/(9√21) = -2/(3√21)
(a × b) • j = ||a × b|| ||j|| cos(β)
⇒ cos(β) = -39/(9√21)
(a × b) • k = ||a × b|| ||k|| cos(γ)
⇒ cos(γ) = -12/(9√21) = -4/(3√21)
d) a × b is perpendicular to both a and b, so we can get a unit vector by scaling this down by its magnitude. This is the same as the vector of direction cosines:
(a × b)/||a × b|| = (-6i - 39j - 12k)/(9√21)
(a × b)/||a × b|| = -2/(3√21) i - 39/(9√21) k - 4/(3√21) k
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.