Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

In a normal distribution of measurements having a mean of 410 feet and a standard deviation of 45 feet, what percent of the distribution falls between 400 and 500 feet?

Sagot :

18.45 % percent of the distribution falls between 400 and 500 feet.

Z score is a standard score that tells you how many standard deviations away from the mean an individual value X.

Mean value ,μ= 410 feet

Standard deviation, σ = 45 feet

X = square of an individual

In a set with mean value and standard deviation the z score of a measure X is given by:

 Z = (X - μ)/σ

percent of the distribution that falls between 400 and 500 feet

when

X = 400feet

Z = 400-410 / 45 = -0.22

p-value for Z= 400 is 0.4129

X = 500 feet

Z = 500- 410 / 45 = 2

p-value for Z = 500 is 0.2275

So there is 0.4129 - 0.2275 = 0.1854 = 18.45 %percent of the distribution falls between 400 and 500 feet.

Do you know more about standard deviation:

https://brainly.com/question/17076219

#SPJ4

We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.