Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
The derivative of the function is dy/dx = 4([tex]x^{4sinx}[/tex])[(sin x) / x + (cos x) (ln x)]
y = [tex]x^{4sin x}[/tex]
Taking the log of both sides:
ln y = sin x ln [tex]x^{4}[/tex] = (sin x) * (4 ln x) = 4 (sin x)(ln x)
Now differentiate both sides. On the left you'll need to use the chain rule, and on the right you'll use the product rule:
1/y dy/dx = 4[(sin x) (1/x) + (cos x)(ln x)] = 4 [(sin x) / x + (cos x)(ln x)]
Multiply both sides by y
dy/dx = y * 4 [(sin x) / x + (cos x)(ln x)]
Since y = [tex]x^{4sinx}[/tex], we can rewrite this as:
dy/dx = [tex]x^{4sinx}[/tex] * 4 [(sin x) / x + (cos x)(ln x)]
dy/dx = 4[tex]x^{4sinx}[/tex] [(sin x) / x + (cos x)(ln x)]
Chain rule is the formula used to find the derivative of a composite function. Product rule is used to find derivative of products of two or more functions.
Therefore, the derivative of the function y = [tex]x^{4sin x}[/tex] is dy/dx = 4([tex]x^{4sinx}[/tex])[(sin x) / x + (cos x) (ln x)]
To know more about derivative of the function
https://brainly.com/question/25752367
#SPJ4
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.