Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Calculate the energy of a photon emitted when an electron in a hydrogen atom undergoes a transition from =7 to =1.

Sagot :

1.549×10-19lJ is the energy of a photon emitted when an electron in a hydrogen atom undergoes a transition from =7 to =1.

The equation E= hcE =hc, where h is Planck's constant and c is the speed of light, describes the inverse relationship between a photon's energy (E) and the wavelength of light ().

The Rydberg formula is used to determine the energy change.

Rydberg's original formula used wavelengths, but we may rewrite it using units of energy instead. The result is the following.

aaΔE=R(1n2f−1n2i) aa

were

2.17810-18lJ is the Rydberg constant.

The initial and ultimate energy levels are ni and nf.

As a change of pace from

n=5 to n=3 gives us

ΔE

=2.178×10-18lJ (132−152)

=2.178×10-18lJ (19−125)

=2.178×10-18lJ×25 - 9/25×9

=2.178×10-18lJ×16/225

=1.549×10-19lJ

Learn more about Rydberg formula here-

https://brainly.com/question/13185515

#SPJ4