At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
If a high school student decides to apply four of six famous colleges, then the four colleges can be selected in as many as 15 different combinations.
As per question statement, a high school student decides to apply four of six famous colleges.
We are required to calculate the number of combinations in which the four colleges can be selected.
To solve this question, we need to know the formula of Combination which goes as [tex](nCr)=\frac{n!}{r!(n-r)!}[/tex]
, i.e., we are to select a set or "r" from a set of "n".
Here, we have to select a combination of 4 from a set of 6.
Therefore applying (nCr) formula with (n = 6) and (r = 4), we get,
[tex](6C4)=\frac{6!}{4!(6-4)!} =\frac{6!}{4!2!}=\frac{4!*5*6}{4!*2}=\frac{5*6}{2}=(5*3)=15[/tex].
- Combinations: In mathematics, a combination is a method of selecting items from a particular set, where the order of selection does not matter, i.e., if we have a set of three P, Q and R, then in how many ways we can select two numbers from each set, can be easily defined by combination.
To learn more about combinations, click on the link below.
brainly.com/question/8561440
#SPJ9
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.