Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Radiation with a wavelength of 263.9 nm can eject a 2.00 -eV electron from a calcium electrode. Calcium has a piece function of 2.seventy one eV.
The expelled photoelectrons are E = 2.0 eV, so
⇒ [tex]2.0 eV = E_{in} -2.71 eV[/tex]
⇒ [tex]E_{in}=2.0 eV +2.71eV[/tex]
⇒ [tex]E_{in} = 4.71 eV[/tex]
in Joules, it is
⇒ [tex]E_{in} =4.71*1.6*10^{-19} J[/tex]
⇒ [tex]E_{in} =7.536*10^{-19} J[/tex]
Since [tex]E_{in}=h\nu=\frac{hc}{\lambda}[/tex], the wavelength must be
[tex]\Rightarrow \lambda = \frac{hc}{E_{in} }[/tex]
[tex]\Rightarrow \lambda=\frac{(6.64*10^{-34}Js)(3*10^{8}m/s) }{7.536*10^{-19} J}[/tex]
[tex]\Rightarrow \lambda=263.9\times10^{-9} \; m[/tex]
[tex]\Rightarrow \lambda=263.9 \;n m[/tex]
inside the photoelectric impact, the electricity of the photoelectrons chosen from metallic with work function ∅ thanks to misguided radiation of the entirety
If radiation moves a calcium electrode with the work feature ∅ = 2.seventy one eV and the power of radiation equals
Know more about the wavelength of radiation:
https://brainly.com/question/9108146
#SPJ4
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.