Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Radiation with a wavelength of 263.9 nm can eject a 2.00 -eV electron from a calcium electrode. Calcium has a piece function of 2.seventy one eV.
The expelled photoelectrons are E = 2.0 eV, so
⇒ [tex]2.0 eV = E_{in} -2.71 eV[/tex]
⇒ [tex]E_{in}=2.0 eV +2.71eV[/tex]
⇒ [tex]E_{in} = 4.71 eV[/tex]
in Joules, it is
⇒ [tex]E_{in} =4.71*1.6*10^{-19} J[/tex]
⇒ [tex]E_{in} =7.536*10^{-19} J[/tex]
Since [tex]E_{in}=h\nu=\frac{hc}{\lambda}[/tex], the wavelength must be
[tex]\Rightarrow \lambda = \frac{hc}{E_{in} }[/tex]
[tex]\Rightarrow \lambda=\frac{(6.64*10^{-34}Js)(3*10^{8}m/s) }{7.536*10^{-19} J}[/tex]
[tex]\Rightarrow \lambda=263.9\times10^{-9} \; m[/tex]
[tex]\Rightarrow \lambda=263.9 \;n m[/tex]
inside the photoelectric impact, the electricity of the photoelectrons chosen from metallic with work function ∅ thanks to misguided radiation of the entirety
If radiation moves a calcium electrode with the work feature ∅ = 2.seventy one eV and the power of radiation equals
Know more about the wavelength of radiation:
https://brainly.com/question/9108146
#SPJ4
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.