Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Answer:
(g-h)(x) = x+3-2x2
(g+h)(x) = x+ 3 +2x2
to evaluate, replace x by -3 and compute, carefully.
Answer:
[tex](g-h)(x) = 3x+11[/tex]
[tex](g+h)(x) = 5x+1[/tex]
[tex](g-h)(3) =20[/tex]
[tex](g+h)(3) =16[/tex]
Step-by-step explanation:
Given functions:
[tex]\begin{cases}g(x)=4x+6\\h(x)=x-5\end{cases}[/tex]
Function composition is an operation that takes two functions and produces a third function.
Therefore, the composite function (g-h)(x) means subtract function h(x) from function g(x). Similarly, (g+h)(x) means to add function h(x) to function g(x).
[tex]\begin{aligned}(g-h)(x) & = g(x)-h(x)\\& = (4x+6)-(x-5)\\& = 4x+6-x+5\\& = 4x-x+6+5\\& = 3x+11\end{aligned}[/tex]
[tex]\begin{aligned}(g+h)(x) & = g(x)+h(x)\\& = (4x+6)+(x-5)\\& = 4x+6+x-5\\& = 4x+x+6-5\\& = 5x+1\end{aligned}[/tex]
To evaluate both composite functions when x = 3, simply substitute x = 3 into the found composite functions:
[tex]\begin{aligned}(g-h)(3) & = 3(3)+11\\& = 9+11\\&=20\end{aligned}[/tex]
[tex]\begin{aligned}(g+h)(3) & = 5(3)+1\\& = 15+11\\&=16\end{aligned}[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.