Westonci.ca is your trusted source for finding answers to all your questions. Ask, explore, and learn with our expert community. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Answer:
[tex]k=-\dfrac{11}{2}[/tex]
[tex]\left(x+\dfrac{7}{2}\right)[/tex]
Step-by-step explanation:
[tex]\boxed{\begin{minipage}{5.7 cm}\underline{Factor Theorem}\\\\If f$(x)$ is a polynomial, and f$(a) = 0$,\\then $(x-a)$ is a factor of f$(x)$.\end{minipage}}[/tex]
Given polynomial function:
[tex]p(x)=x^2-kx+7[/tex]
Apply the Factor Theorem:
[tex]\begin{aligned} \textsf{If $(x + 2)$ is a factor of $p(x)$ then: \quad}p(-2)&=0\\\\\implies (-2)^2-k(-2)+7&=0\\4+2k+7&=0\\2k+11&=0\\2k&=-11\\k&=-\dfrac{11}{2}\end{aligned}[/tex]
Substitute the found value of k into the original function:
[tex]\implies p(x)=x^2-\left(-\dfrac{11}{2}\right)x+7[/tex]
[tex]\implies p(x)=x^2+\dfrac{11}{2}x+7[/tex]
As (x + 2) is factor of the polynomial, and the leading coefficient of the function is 1, the other factor will be (x + q) where q is a constant to be found.
[tex]\begin{aligned}x^2+\dfrac{11}{2}x+7 & = (x+2)(x+q)\\& = x^2+qx+2x+2q\\& = x^2+(2+q)x+2q \end{aligned}[/tex]
Compare the constant of the given polynomial with the constant of the expanded factors:
[tex]\implies 2q=7[/tex]
[tex]\implies q=\dfrac{7}{2}[/tex]
Therefore:
[tex]\implies x^2+\dfrac{11}{2}x+7 = (x+2)\left(x+\dfrac{7}{2}\right)[/tex]
So the other factor of the given polynomial is:
[tex]\left(x+\dfrac{7}{2}\right)[/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.