Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Answer:
Solution below.
Step-by-step explanation:
This question involves the concept of solving simultaneous equations.
Let R be the number of regular tickets.
Let V be the number of VIP tickets.
Given information from the question, we can deduce that:
R + V = 270 (Equation 1)
25R + 45V = 7,650 (Equation 2)
We can rewrite Equation 1 as:
R = 270 - V (Equation 1A)
Now we can use the Substitution Method to solve for R and V.
Substitute Equation 1A into Equation 2:
25(270 - V) + 45V = 7,650
6,750 - 25V + 45V = 7,650
20V = 7,650 - 6,750
V = 900 ÷ 20 = 45 tickets
Now lets substitute V into Equation 1 to find R.
R + 45 = 270
R = 270 - 45 = 225 tickets
Therefore there were 45 VIP Tickets and 225 Regular Tickets sold.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.