Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

VIVA.-1VISSV0.574 * T₁+0.5 * T₂ = 03. An object of mass 900 kg is hanging from a ceilingby means of two strings. The first string (T₁) makes anangle of 40 degree with the horizontal-right. The second string(7₂) makes an angle of 20 degree with the horizontal-left.Calculate the tension in the first string ( 7₁ ) (2 point)A. O12034.001 NB. O14675.062 NC. O5790.32 ND. 9570.261 NE. O13316.872 N

VIVA1VISSV0574 T05 T 03 An Object Of Mass 900 Kg Is Hanging From A Ceilingby Means Of Two Strings The First String T Makes Anangle Of 40 Degree With The Horizon class=

Sagot :

Given:

The mass of an object is 900 kg.

The angle made by string 1 with the horizontal right is 40°.

The angle made by string 2 with the horizontal left is 20°.

Standard data: The acceleration due to gravity is 9.8 m/s^2.

To find:

The tension in the string 1.

Explanation:

Let, the tension in string 1 be T1 and the tension in string 2 be T2. The tension in both the string is resolved in their horizontal and vertical components as shown in the diagram.

The weight of the object mg acts vertically downwards.

The horizontal components of the string are acting in opposite directions and thus balance each other. Thus, we get:

[tex]T_1cos40\degree=T_2cos20\degree[/tex]

Rearranging the above equation, we get:

[tex]T_2=\frac{T_1cos40\degree}{cos20\degree}\text{ ..... \lparen1\rparen}[/tex]

The vertically upwards sine components of the tension add up which balances the vertically downwards acting weight mg of the object. Thus, we get:

[tex]T_1sin40\degree+T_2sin20\degree=mg[/tex]

Substituting T2 from equation (1) in the above equation, we get:

[tex]\begin{gathered} T_1sin40\degree+\frac{T_1cos40\degree sin20\degree}{cos20\degree}=mg \\ \\ T_1(sin40\degree+\frac{cos40\degree sin20\degree}{cos20\degree})=mg \\ \\ T_1=\frac{mg}{(sin40\degree+\frac{cos40\degree sin20\degree}{cos20\degree})} \end{gathered}[/tex]

Substituting the values in the above equation, we get:

[tex]\begin{gathered} T_1=\frac{900\text{ kg}\times9.8\text{ m/s}^2}{(s\imaginaryI n40\operatorname{\degree}+\frac{cos40\operatorname{\degree}s\imaginaryI n20\operatorname{\degree}}{cos20\operatorname{\degree}})} \\ \\ T_1=\frac{8820\text{ kg m/s}^2}{0.6428+\frac{0.7660\times0.3420}{0.9397}} \\ \\ T_1=\frac{8820(\text{kgm\/s})^2}{0.6428+0.2788} \\ \\ T_1=9570.312\text{ N} \end{gathered}[/tex]

Option (D) 9570.261 N is very close to 9570.312 N.

Final Answer:

The tension in string 1 is 9750.260 N. Thus, the correct option is D.

View image KathalinaU464087