Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Find a general equation of the parabola that satisfies the given conditions.

Find A General Equation Of The Parabola That Satisfies The Given Conditions class=

Sagot :

Answer

[tex](x-1)^2\text{ = -8(y + 2) ------- The general equation}[/tex]

Step-by-step explanation

[tex]\begin{gathered} \text{Given the vertex and the focus} \\ \text{Vertex = (1, -2) and focus = (1, 0)} \\ \text{The general form of parabola equation is} \\ (x-h)^2\text{ = }4p\text{ (y - k)} \\ Firstly,\text{ we n}eed\text{ to find P} \\ \text{ since (h, k) = (1, -2)} \\ P\text{ is the distance betw}een\text{ focus and vertex} \\ p\text{ = }\sqrt[]{(1-1)^2+(-2-0)^2} \\ p\text{ = }\sqrt[]{0\text{ + 4}} \\ p\text{ = }\sqrt[]{4} \\ p\text{ = 2} \\ p\text{ will be -2 since the graph is a negative graph} \\ (x-1)^2\text{ = 4\lbrack(-2) (y - (-2)\rbrack} \\ (x-1)^2\text{ = -8 (y + 2)} \\ \text{Open the parentheses} \\ (x\text{ - 1)(x-1) = -8y - 16} \\ x^2\text{ - 2x + 1 = }-8y-\text{ 16} \\ x^2\text{ - 2x + 1 - 16 = -8y} \\ y\text{ = -}\frac{1}{8}(x^2\text{ - 2x - 15)} \end{gathered}[/tex]