Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.

Use completing the square to rewrite y = x2 − 4x − 21 in vertex form. Identify the maximum or minimum value.

Use Completing The Square To Rewrite Y X2 4x 21 In Vertex Form Identify The Maximum Or Minimum Value class=

Sagot :

Step 1:

Write the quadratic equation

[tex]\text{y = x}^2\text{ - 4x - 21}[/tex]

Step 2:

To find the vertex point, find x = -b/2a

[tex]\begin{gathered} \text{a = 1 , b = -4} \\ x\text{ = }\frac{-(-4)}{2\times1} \\ \text{x = }\frac{4}{2} \\ \text{x = 2} \end{gathered}[/tex]

Step 3:

find the value of y for the corresponding value of x.

[tex]\begin{gathered} \text{y = x}^2\text{ - 4x - 21} \\ y=2^2\text{ - 4(2) - 21} \\ \text{y = 4 - 8 - 21} \\ \text{y = -25} \end{gathered}[/tex]

Step 4:

[tex]\begin{gathered} \text{From ax}^2\text{ + bx + c = 0} \\ \text{Compare with x}^2\text{ - 4x - 21 = 0} \\ \text{If a > 0 (positive) then the vertex is minimum} \\ \text{if a < 0 (negative) then the vertex is maxi}mim \\ \text{Hence, from the equation a >0, them the vertex is minimum.} \end{gathered}[/tex]

Final answer

The minimum value is -25

We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.