Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To detect the error you have to solve the inequality, without watching the steps, and then compare them to see where Student A made the mistake.
The expression is
[tex]-2(x+4)\leq-3x[/tex]1) First step is to use the distributive property of multiplication to solve the term in parentheses
[tex]\begin{gathered} -2\cdot x+(-2)\cdot4\leq-3x \\ -2x-8\leq-3x \end{gathered}[/tex]2) Second step is to pass "-2x" to the other side of the inequation by performing the inverse operation to both sides of it:
[tex]\begin{gathered} -2x+2x-8\leq-3x+2x \\ -8\leq-x \end{gathered}[/tex]3) The term "-x" has a hidden coefficient "-1", to determine the value of "x" you'll have to divide both sides of the expression by "-1"
When working with inequalities, when you divide by a negative value, the direction gets inversed. So that:
[tex]\begin{gathered} -\frac{8}{-1}\ge-\frac{x}{-1} \\ 8\ge x \end{gathered}[/tex]If the original direction is "<" when you divide by a negative value it gets inversed to ">"
The mistake the student made was in the last step, where the student divided by a negative value but did not change the direction of the inequality.
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.