Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

Use implicit differentiation to find the equations of the tangent and normal lines at the point (3, 1) for the curve (y2 + 4)y = 13.

Use Implicit Differentiation To Find The Equations Of The Tangent And Normal Lines At The Point 3 1 For The Curve Y2 4y 13 class=

Sagot :

Given the equation below;

[tex](x^2+4)y=13[/tex]

To find the derivative of the equation above, we will defferentiate implicitly, this is shown below

[tex]\begin{gathered} (x^2+4)y=13 \\ \text{ Remove bracket} \\ x^2(y)+4(y)=13 \\ x^2y+4y=13 \end{gathered}[/tex][tex]\begin{gathered} 2xy+x^2\frac{\mathrm{d}y}{dx}+4\frac{\mathrm{d}y}{dx}=0 \\ x^2\frac{\mathrm{d}y}{dx}+4\frac{\mathrm{d}y}{dx}=-2xy \\ \text{factor }\frac{\mathrm{d}y}{dx} \\ \frac{\mathrm{d}y}{dx}(x^2+4)=-2xy \end{gathered}[/tex][tex]\frac{\mathrm{d}y}{dx}=\frac{-2xy}{(x^2+4)}[/tex]

At point (3, 1) we can obtain the value of the slope ( dy/dx), by substituting for x and y.

[tex]\begin{gathered} x=3,y=1 \\ \frac{\mathrm{d}y}{dx}=\frac{-2xy}{(x^2+4)} \\ \frac{\mathrm{d}y}{dx}=\frac{-2(3)(1)}{3^2+4}=\frac{-6}{9+4}=-\frac{6}{13} \end{gathered}[/tex]

Using the point-slope equation of a line formula as shown below

[tex]y-y_1=m(x-x_1)[/tex]

We can use the above to find the tangent to the line equation. then we have:

[tex]\begin{gathered} y-1=-\frac{6}{13}(x-3) \\ y-1=-\frac{6}{13}x+\frac{18}{13} \\ y=-\frac{6}{13}x+\frac{18}{13}+1 \\ y=-\frac{6}{13}x+\frac{31}{13} \end{gathered}[/tex]

To find the normal line equation, we have to use the condition for perpendicularity of two lines, that is

[tex]\begin{gathered} m_1=-\frac{1}{m_2} \\ If_{} \\ m_1\Rightarrow\text{slope of the tangent line} \\ m_2\Rightarrow\text{slope of the normal line} \\ m_2=-\frac{1}{m_1} \\ \text{Thus, the slope of the normal line is} \\ =\frac{13}{6} \end{gathered}[/tex]

Using point-slope equation of a line we can also find the normal line equation.

[tex]\begin{gathered} y-1=\frac{13}{6}(x-3) \\ y-1=\frac{13}{6}x-\frac{13}{2} \\ y=\frac{13}{6}x-\frac{13}{2}+1 \\ y=\frac{13}{6}x-\frac{11}{2} \end{gathered}[/tex]

Hence, the tangent line and normal line equation are

[tex]\begin{gathered} \text{tangent line}\Rightarrow y=-\frac{6}{13}x+\frac{31}{13}\text{ } \\ \text{normal line}\Rightarrow y=\frac{13}{6}x-\frac{11}{2} \end{gathered}[/tex]

This can be simplified as;

[tex]\begin{gathered} \text{tangent line}\Rightarrow y=-\frac{6}{13}x+2\frac{5}{13}\text{ } \\ \text{normal line}\Rightarrow y=2\frac{1}{6}x-5\frac{1}{2} \end{gathered}[/tex]