Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

find the x and y intercepts of the line that passes through the given points (-5,-5), (10,-2)x intercept =y intercept =

Sagot :

The equation of line passing through the points is given by,

[tex]\frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1}[/tex]

Let,

[tex]\begin{gathered} (x_{1,}y_1)=(-5,\text{ -5}) \\ (x_{2,}y_2)=(10,\text{ -2)} \end{gathered}[/tex]

Then the equation of the line is,

[tex]\begin{gathered} \frac{y-(-5)}{-2-(-5)}=\frac{x-(-5)}{10-(-5)} \\ \frac{y+5}{3}=\frac{x+5}{15} \\ 15y+75=3x+15 \\ 3x-15y=60 \\ x-5y=20 \\ \end{gathered}[/tex]

Converting the above equation into the intercept form,

Dividing the equation on both sides by 20,

[tex]\begin{gathered} \frac{x}{20}-\frac{5y}{20}=1 \\ \frac{x}{20}+\frac{y}{-4}=1 \end{gathered}[/tex]

On comparing the above equation with the intercept form

[tex]\frac{x}{a}+\frac{y}{b}=1[/tex]

We get,

x-intercept is, a=20 and the y-intercept is, b=-4