Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
SOLUTION
From the line
[tex]\begin{gathered} 3x-y+4=0 \\ -y=-3x-4 \\ \text{dividing by -1} \\ \frac{-y}{-1}=\frac{-3x}{-1}+\frac{-4}{-1} \\ y=3x+4 \end{gathered}[/tex]Equation of the line parallel to this line must have the same slope of the line.
From equation of a line in slope-intercept form,
[tex]\begin{gathered} y=mx+c \\ \text{where m is the slope and c the intercept on the y-axis, then } \\ y=3x+4\text{ has a slope of 3,} \\ \text{that is m = 3} \end{gathered}[/tex]Now, let the new line have the equation
[tex]\begin{gathered} y=3x+c,\text{ since it has the same slope (3) of the other line } \\ So,\text{ now, we have to find c} \end{gathered}[/tex]From the function
[tex]\begin{gathered} f(x)=x^3 \\ f^{\prime}(x)=3x^2 \\ To\text{ be tangent to the line }y=3x+c,\text{ the curve should have same } \\ \text{slope and be equal to the line, hence } \\ 3x^2=3 \\ x^2=1 \\ x=\sqrt[]{1} \\ x=1 \end{gathered}[/tex]Substituting the value of x into f(x), we have
[tex]\begin{gathered} f(x)=x^3 \\ y=1^3 \\ =1 \end{gathered}[/tex]So, they are both tangent at (1, 1).
From the equation above we have
[tex]y=3x+c[/tex]Substituting the values of x = 1 and y = 1 in the above equation, we have
[tex]\begin{gathered} y=3x+c \\ 1=3(1)+c \\ 1=3+c \\ 1-3=c \\ -2=c \\ c=-2 \end{gathered}[/tex]Substituting the c for -2 back into the original equation we have
[tex]\begin{gathered} y=3x+c \\ y=3x-2 \end{gathered}[/tex]Hence the answer is
[tex]y=3x-2[/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.