Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Use Second Derivative Test to find minimum and maximum of f(x) =3x^5 - 10x^3

Sagot :

Given the function:

[tex]f(x)=3x^5-10x^3[/tex]

1. You need to find the first derivative.

Remember the Power Rule Derivative:

[tex]\frac{d}{dx}(x^n)=nx^{n-1}[/tex]

Then:

[tex]f^{\prime}(x)=(3)(5)x^{5-1}-(3)(10)x^{3-1}[/tex][tex]f^{\prime}(x)=15x^4-30x^2[/tex]

2. Make the first derivative equal to zero:

[tex]15x^4-30x^2=0[/tex]

3. Solve for "x":

- Identify the Greatest Common Factor (the largest factor the terms have in common):

[tex]GCF=15x^2[/tex]

- Factor the Greatest Common Factor out:

[tex]15x^2(x^2-2)=0[/tex]

- Notice that you can divide the equation into two parts and solve for "x":

[tex]\begin{gathered} 15x^2=0\Rightarrow x=\frac{15}{0}\Rightarrow x=0 \\ \\ x^2-2=0\Rightarrow x=\pm\sqrt{2}\Rightarrow\begin{cases}x={-\sqrt{2}} \\ x={\sqrt{2}}\end{cases} \end{gathered}[/tex]

4. Find the second derivate by derivating the first derivative:

[tex]f^{^{\prime}\prime}(x)=(15)(4)x^{4-1}-(30)(2)x^{2-1}[/tex][tex]f^{^{\prime}\prime}(x)=60x^3-60x^[/tex]

5. Substitute the values of "x" found in Step 3 into the second derivative and evaluate:

[tex]f^{^{\prime}\prime}(0)=60(0)^3-60(0)=0[/tex][tex]f^{^{\prime}\prime}(-\sqrt{2})=60(-\sqrt{2})^3-60(-\sqrt{2})\approx-84.9[/tex][tex]f^{^{\prime}\prime}(\sqrt{2})=60(\sqrt{2})^3-60(\sqrt{2})\approx84.9[/tex]

6. According to the Second Derivative Test:

- If:

[tex]f^{\prime}^{\prime}(x)>0[/tex]

Then the function has a local minimum at that x-value.

- If:

[tex]f^{\prime\prime}(x)<0[/tex]

Then the function has a local maximum at that x-value.

In this case:

[tex]f(-\sqrt{2})<0[/tex][tex]f(\sqrt{2})>0[/tex]

Hence, the answer is:

- Local Minimum at:

[tex]x=\sqrt{2}[/tex]

- Local Maximum at:

[tex]x=-\sqrt{2}[/tex]