Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
The line segment RT has coordinates at R(-4, -7) and T(6, -1). Find the slope of this line using the formula;
m= change in y-coordinate values / change in x-coordinate values
m= -1 --7 / 6--4
m= -1+7 /10
m=6/10 --------you can simplify to 3/5
The slope of segment RT is m1= 3/5
The line perpendicular segment RT will have a slope m2 where ;
m1*m2 = -1
Find m2 , which is the gradient of the line perpendicular to segment RT
3/5 * m2 = -1
m2= -5/3
This means the gradient of the perpendicula line to the line segment RT is ;
m2 = -5/3
Now using the slope m2 = -5/3 , the midpoint S, (1, -4) , and imaginary point on the line (x,y) then the equation will be;
m= change in y-values / change in x-values
-5/3 = y--4/x-1
-5/3 = y+4 /x-1
-5{x-1} = 3{y+4}
-5x+5 =3y +12 ------collect like terms and write in form of y= mx + c
-5x+5-12=3y
-5x-7 =3y
-5/3 x - 7/3 = y
y= -5/3 x - 7/3
y-intercept is - 7/3
Answer
-7/3
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.