Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
Given: The equation and inequalty below
[tex]\begin{gathered} y=|3x-12|+1 \\ y<5 \end{gathered}[/tex]To Determine: The values of x satisfying the given conditions using interval notation
Solve the first equation
[tex]y=|3x-12|+1[/tex][tex]\mathrm{Domain\: of\: }\: \mleft|3x-12\mright|+1\: \colon\quad \begin{bmatrix}\mathrm{Solution\colon}\: & \: -\infty\: The range[tex]\mathrm{Range\: of\: }\mleft|3x-12\mright|+1\colon\quad \begin{bmatrix}\mathrm{Solution\colon}\: & \: f\mleft(x\mright)\ge\: 1\: \\ \: \mathrm{Interval\: Notation\colon} & \: \lbrack1,\: \infty\: )\end{bmatrix}[/tex]The y-intercept, make x = 0
[tex]\begin{gathered} y=\mathrm{\: }\mleft|3x-12\mright|+1 \\ y=|3(0)-12|+1 \\ y=|0-12|+1 \\ y=|-12|+1 \\ y=12+1=13 \\ T_{he\text{ coordinate of the y intercept is}} \\ (0,13) \end{gathered}[/tex]The minimum point
[tex]\begin{gathered} T_{he\text{ x coordinate of the minimum point}} \\ 3x-12=0 \\ 3x=12 \\ x=\frac{12}{3}=4 \\ T_{he\text{ y cordinate of the minimum point}} \\ y=|3x-12|+1 \\ y=|3(4)-12|+1 \\ y=|12-12|+1 \\ y=1 \\ T_{he\text{ coordinate of the minimum point is}}=(4,1) \end{gathered}[/tex]Let us graph the two equation as shown below
From the graph above, the set of values of x that satisfies the equation and inequality can be seen from point A to point B.
Hence,
The solution is 2.667 < x < 5.333
Using interval notation we have (2.667, 5.333)
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.