Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

Suppose that the graph of f(x) = Ca^x passes through the points (2, 9.375) and (5, 18.311). Find a formula for f(x).

Suppose That The Graph Of Fx Cax Passes Through The Points 2 9375 And 5 18311 Find A Formula For Fx class=

Sagot :

The given function is:

[tex]f(x)=Ca^x[/tex]

It is given that its graph passes through the points (2,9.375) and (5,18.311).

Recall that if the graph of a function passes through a point, then the coordinates of the point satisfy the equation of the function.

Substitute x=2 and f(x)=9.375 into the equation of the function:

[tex]9.375=Ca^2[/tex]

Substitute x=5 and f(x)=18.311 into the equation of the function:

[tex]18.311=Ca^5[/tex]

Hence, the system of equation is:

[tex]\begin{gathered} 9.375=Ca^2 \\ 18.311=Ca^5 \end{gathered}[/tex]

Solve the system of equations to find the constants C and a.

Divide the second equation by the first equation:

[tex]\begin{gathered} \frac{18.311}{9.375}=\frac{Ca^5}{Ca^2} \\ \Rightarrow\frac{18.311}{9.375}=\frac{\cancel{C}a^5}{\cancel{C}a^2}\Rightarrow\frac{18.311}{9.375}=\frac{a^5}{a^2} \end{gathered}[/tex]

Solve for a in the equation:

[tex]\begin{gathered} \text{Swap the sides of the equation:} \\ \frac{a^5}{a^2}=\frac{18.311}{9.375}\Rightarrow a^{5-2}=1.9532 \\ \Rightarrow a^3=1.9532 \\ \Rightarrow a=\sqrt[3]{1.9532}\approx1.25 \end{gathered}[/tex]

Substitute this value of a into the first equation to solve for C:

[tex]\begin{gathered} 9.375=C(1.25)^2 \\ \Rightarrow C=\frac{9.375}{1.25^2}=6 \end{gathered}[/tex]

Substitute the values of a and C into the initial equation of the function:

[tex]\begin{gathered} f(x)=Ca^x;a=1.25,c=6 \\ \Rightarrow f(x)=6(1.25)^x \end{gathered}[/tex]

The required formula for f(x) is:

[tex]f(x)=6(1.25)^x[/tex]