The given system of inequalities is
[tex]\begin{gathered} y>\frac{3}{2}x-2 \\ y\leq-3x-4 \end{gathered}[/tex]
The area of the solution is the area shaded by the 2 colors
Let us check the points
(-2, -5) it lies on the red dashed line
Since the line is dashed, then the points lie on it do not belong to the solution, then
(-2, -5) does not belong to the solution
(-2, -5) is not a solution
(-2, 2) it lies on the blue line
Since the line is solid, then the points that lie on it belong to the solution, then
(-2, 2) is a solution
(0, -4) it is out of the area of both colors, then
(0, -4) is not a solution
(-3, -1) it lies in the area of the common colors, then
(-3, -1) is a solution
(-1, 4) it is out the area of both colors, then
(-1, 4) is not a solution
(-20, 15) is in the area of the common colors, then
(-20, 15) is a solution
(15, 20) it is out the area of both colors, then
(15, 20) is not a solution
Then the solutions of the system are:
(-2, 2), (-3, -1), (-20, 15)